Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 24(10): 2771-83, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652408

RESUMEN

Dymeclin is a Golgi-associated protein whose deficiency causes Dyggve-Melchior-Clausen syndrome (DMC, MIM #223800), a rare recessively inherited spondyloepimetaphyseal dysplasia consistently associated with postnatal microcephaly and intellectual disability. While the skeletal phenotype of DMC patients has been extensively described, very little is known about their cerebral anomalies, which result in brain growth defects and cognitive dysfunction. We used Dymeclin-deficient mice to determine the cause of microcephaly and to identify defective mechanisms at the cellular level. Brain weight and volume were reduced in all mutant mice from postnatal day 5 onward. Mutant mice displayed a narrowing of the frontal cortex, although cortical layers were normally organized. Interestingly, the corpus callosum was markedly thinner, a characteristic we also identified in DMC patients. Consistent with this, the myelin sheath was thinner, less compact and not properly rolled, while the number of mature oligodendrocytes and their ability to produce myelin basic protein were significantly decreased. Finally, cortical neurons from mutant mice and primary fibroblasts from DMC patients displayed substantially delayed endoplasmic reticulum to Golgi trafficking, which could be fully rescued upon Dymeclin re-expression. These findings indicate that Dymeclin is crucial for proper myelination and anterograde neuronal trafficking, two processes that are highly active during postnatal brain maturation.


Asunto(s)
Enanismo/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Microcefalia/genética , Osteocondrodisplasias/congénito , Proteínas/genética , Animales , Preescolar , Regulación hacia Abajo , Retículo Endoplásmico Rugoso/metabolismo , Femenino , Aparato de Golgi/metabolismo , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Mutantes , Mutación , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Osteocondrodisplasias/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
2.
Med Sci (Paris) ; 29(3): 287-92, 2013 Mar.
Artículo en Francés | MEDLINE | ID: mdl-23544383

RESUMEN

During development, neural crest cells-derived melanoblasts migrate along the dorso-lateral axis into the dermis, then cross the basal layer to reach the epidermis and differentiate into melanocytes. They finally colonize the hair follicles to become resident pigmented cells. Neoplastic transformation converts melanocytes into highly invasive melanoma cells, which can adopt two modes of interconvertible migration (mesenchymal and amoeboid). Through analysis of the coat color phenotype of natural mouse mutants and genetically modified animals, many of the genes regulating migration were identified. Deciphering of cell membrane protrusions and signaling molecules involved in melanoma cell motility was further achieved through 2D and 3D culture systems. Here, we summarize how these data allow a better understanding of the complex mechanisms controlling migration of normal and pathological cells of the melanocytic lineage.


Asunto(s)
Movimiento Celular , Desarrollo Embrionario , Melanocitos/fisiología , Animales , Movimiento Celular/genética , Células Cultivadas , Humanos , Melanoma/patología , Cresta Neural/citología
3.
FEBS J ; 274(12): 3078-93, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17509076

RESUMEN

Recurrent missense fibroblast growth factor receptor 3 (FGFR3) mutations have been ascribed to skeletal dysplasias of variable severity including the lethal neonatal thanatophoric dysplasia types I (TDI) and II (TDII). To elucidate the role of activating mutations causing TDI on receptor trafficking and endocytosis, a series of four mutants located in different domains of the receptor were generated and transiently expressed. The putatively elongated X807R receptor was identified as three isoforms. The fully glycosylated mature isoform was constitutively but mildly phosphorylated. Similarly, mutations affecting the extracellular domain (R248C and Y373C) induced moderate constitutive receptor phosphorylation. By contrast, the K650M mutation affecting the tyrosine kinase 2 (TK2) domain produced heavy phosphorylation of the nonglycosylated and mannose-rich isoforms that impaired receptor trafficking through the Golgi network. This resulted in defective expression of the mature isoform at the cell surface. Normal processing was rescued by tyrosine kinase inhibitor treatment. Internalization of the R248C and Y373C mutant receptors, which form stable disulfide-bonded dimers at the cell surface was less efficient than the wild-type, whereas ubiquitylation was markedly increased but apparently independent of the E3 ubiquitin-ligase casitas B-lineage lymphoma (c-Cbl). Constitutive phosphorylation of c-Cbl by the K650M mutant appeared to be related to the intracellular retention of the receptor. Therefore, although mutation K650M affecting the TK2 domain induces defective targeting of the overphosphorylated receptor, a different mechanism characterized by receptor retention at the plasma membrane, excessive ubiquitylation and reduced degradation results from mutations that affect the extracellular domain and the stop codon.


Asunto(s)
Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Displasia Tanatofórica/genética , Brefeldino A/farmacología , Línea Celular , Membrana Celular/metabolismo , Codón de Terminación , Endocitosis , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Manosa/metabolismo , Mutagénesis Sitio-Dirigida , Mutación Missense , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , TYK2 Quinasa/metabolismo
4.
PLoS One ; 12(3): e0172603, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28273108

RESUMEN

ICAT (Inhibitor of ß-CAtenin and TCF) is a small acidic protein that negatively regulates ß-catenin co-transcriptional activity by competing with TCF/LEF factors in their binding to ß-catenin superhelical core. In melanoma cells, ICAT competes with LEF1 to negatively regulate the M-MITF and NEDD9 target genes. The structure of ICAT consists of two domains: the 3-helix bundle N-terminal domain binds to ß-catenin Armadillo (Arm) repeats 10-12 and the C-terminal tail binds to Arm repeats 5-9. To elucidate the structural mechanisms governing ICAT/ß-catenin interactions in melanoma cells, three ICAT residues Y15, K19 and V22 in the N-terminal domain, contacting hydrophobic ß-catenin residue F660, were mutated and interaction was assessed by immunoprecipitation. Despite the moderate hydrophobicity of the contact, its removal completely abolished the interaction. In the ICAT C-terminal tail consensus sequence, neutralization of the electrostatic interactions between residues D66, E75 and ß-catenin residues K435, K312, coupled to deletion of the hydrophobic contact between F71 and ß-catenin R386, markedly reduced, but failed to abolish the ICAT-mediated negative regulation of M-MITF and NEDD9 promoters. We conclude that in melanoma cells, anchoring of ICAT N-terminal domain to ß-catenin through the hook made by residue F660, trapped in the pincers formed by ICAT residues Y15 and V22, is crucial for stabilizing the ICAT/ß-catenin complex. This is a prerequisite for binding of the consensus peptide to Arm repeats 5-9 and competition with LEF1. Differences between ICAT and LEF1 in their affinity for ß-catenin may rely on the absence in ICAT of hydrophilic residues between D66 and F71.


Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Activación Transcripcional , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Unión Competitiva , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
5.
Eur J Hum Genet ; 14(3): 289-98, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16418739

RESUMEN

Crouzon Syndrome (CS), Pfeiffer syndrome (PS) and the phenotypically related Jackson-Weiss (JW) variant are three craniosynostotic conditions caused by heterozygous mutations in Fibroblast Growth Factor Receptor (FGFR) genes. Screening a large cohort of 84 patients with clinical features of CS, PS or JW by direct sequencing of genomic DNA, enabled FGFR1, 2 or 3 mutation detection in 79 cases. Mutations preferentially occurred in exons 8 and 10 of FGFR2 encoding the third Ig loop of the receptor. Among the 74 FGFR2 mutations that we identified, four were novel including three missense substitutions causing CS and a 2 bp deletion creating a premature stop codon and producing JW phenotype. Five FGFR2 mutations were found in one of the two tyrosine kinase subdomains and one in the Ig I loop. Interestingly, two FGFR2 mutations creating cysteine residues (W290C and Y340C) caused severe forms of PS while conversion of the same residues into another amino-acid (W290G/R, Y340H) resulted in Crouzon phenotype exclusively. Our data provide conclusive evidence that the mutational spectrum of FGFR2 mutations in CS and PS is wider than originally thought. Genotype-phenotype analyses based on our cohort and previous studies further indicate that in spite of some overlap, PS and CS are preferentially accounted for by two distinct sets of FGFR2 mutations. A limited number of recurrent amino-acid changes (W290C, Y340C, C342R and S351C) is commonly associated with the most severe Pfeiffer phenotypes of poor prognosis.


Asunto(s)
Acrocefalosindactilia/genética , Craneosinostosis/genética , Análisis Mutacional de ADN , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Codón de Terminación , Estudios de Cohortes , Cisteína/química , Exones , Facies , Genotipo , Heterocigoto , Homocigoto , Humanos , Mutación Missense , Fenotipo , Pronóstico , Isoformas de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
6.
Eur J Hum Genet ; 14(12): 1240-7, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16912704

RESUMEN

Achondroplasia (ACH) and hypochondroplasia (HCH) are two autosomal-dominant skeletal disorders caused by recurrent missense FGFR3 mutations in the transmembrane (TM) and tyrosine kinase 1 (TK1) domains of the receptor. Although 98% of ACH cases are accounted for by a single G380R substitution in the TM, a common mutation (N540K) in the TK1 region is detected in only 60-65% of HCH cases. The aim of this study was to determine whether the frequency of mutations in patients with HCH was the result of incomplete mutation screening or genetic heterogeneity. Eighteen exons of the FGFR3 gene were entirely sequenced in a cohort of 25 HCH and one ACH patients in whom common mutations had been excluded. Seven novel missense FGFR3 mutations were identified, one causing ACH and six resulting in HCH. Six of these substitutions were located in the extracellular region and four of them creating additional cysteine residues, were associated with severe phenotypes. No mutations were detected in 19 clinically diagnosed HCH patients. Our results demonstrate that the spectrum of FGFR3 mutations causing short-limb dwarfism is wider than originally recognised and emphasise the requirement for complete screening of the FGFR3 gene if appropriate genetic counselling is to be offered to patients with HCH or ACH lacking the most common mutations and their families.


Asunto(s)
Acondroplasia/genética , Osteocondrodisplasias/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Secuencia de Aminoácidos/genética , Huesos/diagnóstico por imagen , Cisteína/metabolismo , Femenino , Humanos , Masculino , Mutación , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/patología , Linaje , Radiografía , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química
7.
Bone ; 39(1): 17-26, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16476576

RESUMEN

Multiple hereditary exostoses (MHE) is an autosomal dominant skeletal disorder caused by mutations in one of the two EXT genes and characterized by multiple osteochondromas that generally arise near the ends of growing long bones. Defective endochondral ossification is likely to be involved in the formation of osteochondromas. In order to investigate potential changes in chondrocyte proliferation and/or differentiation during this process, osteochondroma samples from MHE patients were obtained and used for genetic, morphological, immunohistological, and in situ hybridization studies. The expression patterns of IHH (Indian hedgehog) and FGFR3 (Fibroblast Growth Factor Receptor 3) were similar with transcripts expressed throughout osteochondromas. Expression of PTHR1 (Parathyroid Hormone Receptor 1) transcripts was restricted to a narrow zone of prehypertrophic chondrocytes. Numerous cells forming osteochondromas although resembling prehypertrophic chondrocytes, stained positively with an anti-proliferating cell nuclear antigen (PCNA) antibody. In addition, ectopic expression of collagen type I and abnormal presence of osteocalcin (OC), osteopontin (OP), and bone sialoprotein (BSP) were observed in the cartilaginous osteochondromas. These data indicate that most chondrocytes involved in the growth of osteochondromas can proliferate, and that some of them exhibit bone-forming cell characteristics. We conclude that in MHE, defective heparan sulfate biosynthesis caused by EXT mutations maintains the proliferative capacity of chondrocytes and promotes phenotypic modification to bone-forming cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Proliferación Celular , Condrocitos/patología , Exostosis Múltiple Hereditaria/genética , Adolescente , Adulto , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Condrocitos/ultraestructura , Colágeno Tipo I/metabolismo , ADN/genética , Análisis Mutacional de ADN , Exostosis Múltiple Hereditaria/diagnóstico , Exostosis Múltiple Hereditaria/patología , Femenino , Ligamiento Genético , Humanos , Inmunohistoquímica , Hibridación in Situ , Sialoproteína de Unión a Integrina , Pérdida de Heterocigocidad , Masculino , Mutación , Osteocalcina/metabolismo , Antígeno Nuclear de Célula en Proliferación/análisis , Sialoglicoproteínas/metabolismo
8.
J Invest Dermatol ; 136(6): 1229-1237, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26968260

RESUMEN

Melanoma progression from a primary lesion to a distant metastasis is a complex process associated with genetic alterations, epigenetic modifications, and phenotypic switches. Elucidation of these phenomena may indicate how to interfere with this fatal disease. The role of microRNAs as key negative regulators of gene expression, controlling all cellular processes including cell migration and invasion, is now being recognized. Here, we used in silico analysis of microRNA expression profiles of primary and metastatic melanomas and functional experiments to show that microRNA-125b (miR-125b) is a determinant candidate of melanoma progression: (i) miR-125b is more strongly expressed in aggressive metastatic than primary melanomas, (ii) there is an inverse correlation between the amount of miR-125b and overall patient survival, (iii) invasion/migration potentials in vitro are inversely correlated with the amount of miR-125b in a series of human melanoma cell lines, and (iv) inhibition of miR-125b reduces migratory and invasive potentials without affecting cell proliferation in vitro. Furthermore, we show that neural precursor cell expressed developmentally down-regulated protein 9 (i.e., NEDD9) is a direct target of miR-125b and is involved in modulating melanoma cell migration and invasion. Also, transcription factor 4, associated with epithelial-mesenchymal transition and invasion, induces the transcription of miR-125b-1. In conclusion, the transcription factor 4/miR-125b/NEDD9 cascade promotes melanoma cell migration/invasion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral/citología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Fosfoproteínas/genética , Factores de Transcripción/genética , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Humanos , Melanoma/genética , Melanoma/patología , Muestreo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factor de Transcripción 4 , Melanoma Cutáneo Maligno
9.
Med Sci (Paris) ; 21(11): 954-61, 2005 Nov.
Artículo en Francés | MEDLINE | ID: mdl-16274647

RESUMEN

Skeletal development is a highly sophisticated process involving, as a first step, migration and condensation of mesenchymal cells into osteoprogenitor cells. These cells further differentiate into chondrocytes and osteoblasts through multiple differentiation stages requiring a set of specific transcriptional factors. Defective endochondral ossification in human is associated with a large number of inherited skeletal dysplasias caused by mutations in genes encoding extracellular matrix components, growth factors and their receptors, signaling molecules and transcription factors. This review summarizes some of the recent findings on a series of chondrodysplasias caused by mutations in FGFR3 and PTHR1, two receptors expressed in the cartilage growth plate and mediating two main signaling pathways. Data from human diseases and relevant animal models provide new clues for understanding how signaling molecules and their interaction with key transcription factors control and regulate the development and growth of long bones.


Asunto(s)
Condrogénesis/fisiología , Osteocondrodisplasias/genética , Osteogénesis/fisiología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/fisiología , Receptores de Hormona Paratiroidea/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Condrogénesis/genética , Factor 3 de Crecimiento de Fibroblastos/fisiología , Placa de Crecimiento/patología , Humanos , Mesodermo/citología , Modelos Animales , Modelos Genéticos , Mutación , Osteocondrodisplasias/fisiopatología , Osteogénesis/genética , Hormona Paratiroidea/fisiología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor de Hormona Paratiroídea Tipo 1 , Receptores de Hormona Paratiroidea/deficiencia , Receptores de Hormona Paratiroidea/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Eur J Hum Genet ; 10(12): 819-24, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12461689

RESUMEN

Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several autosomal dominant craniosynostosis syndromes and chondrodysplasias i.e. hypochondroplasia, achondroplasia, SADDAN and thanatophoric dysplasia--a neonatal lethal dwarfism syndrome. Recently, activating FGFR3 mutations have also been found to be present in cancer, i.e. at high frequency in carcinoma of the bladder and rarely in multiple myeloma and carcinoma of the cervix. Almost all reported mutations in carcinomas corresponded to the mutations identified in thanatophoric dysplasia. We here screened a series of 297 bladder tumours and found three FGFR3 somatic mutations (G380/382R; K650/652M and K650/652T) that were not previously identified in carcinomas or thanatophoric dysplasia. Another novel finding was the occurrence of two simultaneous FGFR3 mutations in four tumours. Two of the three new mutations in bladder cancer, the G380/382R and the K650/652M mutations, were previously reported in achondroplasia and SADDAN, respectively. These syndromes entail a longer life span than thanatophoric dysplasia. The K650/652T mutation has not previously been detected in patients with skeletal disorders, but affects a codon that has been shown to be affected in some cases of thanatophoric dysplasia, SADDAN and hypochondroplasia. From a clinical perspective, the patients with FGFR3-related, non-lethal skeletal disorders might be at a higher risk for development of bladder tumours than the general population.


Asunto(s)
Enfermedades Óseas/genética , Mutación/genética , Proteínas Tirosina Quinasas , Receptores de Factores de Crecimiento de Fibroblastos/genética , Neoplasias de la Vejiga Urinaria/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Neoplasias de la Vejiga Urinaria/patología
11.
Expert Rev Mol Med ; 5(4): 1-17, 2003 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-14987407

RESUMEN

Premature fusion of cranial sutures underlies the clinical condition of 'craniosynostosis', a common human disorder that occurs in both nonsyndromic and syndromic forms. The subgroup of syndromic craniosynostoses usually associates limb abnormalities and facial dysmorphism to skull distortion. Over the past decade, some of the genes causing these phenotypes have been identified. Among these, the gene encoding FGFR2, one of four members of the fibroblast growth factor receptor(FGFR) family, has been shown to account for several severe conditions including Apert, Pfeiffer, Crouzon, Beare-Stevenson and Jackson-Weiss syndromes. Two other FGFRs, FGFR1 and FGFR3, also account for craniosynostoses of variable severity [Pfeiffer, Crouzon with acanthosis nigricans (a pre-malignant skin disorder), and Muenke syndromes]. By contrast,Saethre-Chotzen syndrome and craniosynostosis (Boston-type) arise from mutations in the Twist and muscle segment homeobox 2 (MSX2) transcription factors, respectively. Whereas most FGFR mutations are likely to cause ligand independent activation of the receptor, leading to an upregulation of signaling pathways, mutations in the basic helix-loop-helix (bHLH) transcription factor Twist appear to induce loss of protein function. This review will summarise and discuss some of the cellular and molecular mechanisms involved in normal and abnormal craniofacial development, focusing on the possible interactions between the different factors controlling membranous ossification.


Asunto(s)
Craneosinostosis/genética , Anomalías Craneofaciales/genética , Craneosinostosis/etiología , Humanos , Mutación , Receptores de Factores de Crecimiento de Fibroblastos/genética , Síndrome , Factores de Transcripción/genética
12.
Cancer Res ; 74(7): 1983-95, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24514042

RESUMEN

Inhibitor of ß-catenin and TCF (ICAT) inhibits ß-catenin transcriptional activity by competing with T-cell factor/lymphoid enhancer factor. We documented high ICAT levels in human melanoma cells, in which ß-catenin signaling is frequently deregulated, finding a correlation with the capacity to form metastases in nude mice. Ectopic expression of ICAT in melanoma cells did not affect their proliferation but increased cell motility and Matrigel invasion of metastatic cells in a manner relying upon stable ICAT-ß-catenin interaction. This effect was associated with conversion of an elongated/mesenchymal phenotype to a round/amoeboid phenotype in the absence of similar effects on elongated morphology of nonmetastatic melanoma cells. Transition from mesenchymal to amoeboid movement was associated with decreased levels of NEDD9 and activated Rac1, a positive regulator of mesenchymal movement. Ectopic ICAT promoted colonization of melanoma cells in the lungs of nude mice, suggesting an increase in metastatic potential. Together, our results showed that by downregulating Rac signaling in metastatic melanoma cells, ICAT increased their invasive motility by promoting a morphologic variation that facilitates a favorable adaptation to their microenvironment.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Melanoma/patología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Melanoma/mortalidad , Melanoma/secundario , Ratones , Ratones Desnudos , Invasividad Neoplásica , Fosfoproteínas/fisiología , beta Catenina/fisiología
13.
Pigment Cell Melanoma Res ; 26(3): 316-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23433358

RESUMEN

During embryonic development in vertebrates, the neural crest-derived melanoblasts migrate along the dorsolateral axis and cross the basal membrane separating the dermis from the epidermis to reach their final location in the interfollicular epidermis and epidermal hair follicles. Neoplastic transformation converts melanocytes into highly invasive and metastatic melanoma cells. In vitro, these cells extend various types of protrusions and adopt two interconvertible modes of migration, mesenchymal and amoeboid, driven by different signalling molecules. In this review, we describe the major contributions of natural mouse mutants, mouse models generated by genetic engineering and in vitro culture systems, to identification of the genes, signalling pathways and mechanisms regulating the migration of normal and pathological cells of the melanocyte lineage, at both the cellular and molecular levels.


Asunto(s)
Movimiento Celular , Melanocitos/patología , Melanoma/patología , Animales , Desarrollo Embrionario , Humanos , Modelos Biológicos , Invasividad Neoplásica
14.
PLoS One ; 8(1): e53183, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382837

RESUMEN

BACKGROUND: Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/ß-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes.


Asunto(s)
Diferenciación Celular/fisiología , Conducto Arterioso Permeable/fisiopatología , Desarrollo Embrionario , Miocitos del Músculo Liso/patología , Nacimiento Prematuro/fisiopatología , Animales , Linaje de la Célula , Proliferación Celular , Conducto Arterioso Permeable/etiología , Femenino , Humanos , Melanocitos/citología , Ratones , Contracción Muscular/fisiología , Embarazo , Vía de Señalización Wnt
15.
Pediatr Pathol Mol Med ; 22(4): 311-21, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14692227

RESUMEN

Mutations in a sulfate-chloride antiporter gene, the diastrophic dysplasia sulfate transporter (DTDST), have been associated with a family of skeletal dysplasias including recessive multiple epiphyseal dysplasia, diastrophic dysplasia (DTD), atelosteogenesis type 2, and achondrogenesis type 1B (ACG1B). DTDST function is crucial for uptake of extracellular sulfate required for proteoglycan (PG) sulfation; the tissue-specific expression of the clinical phenotype may be the consequence of the high rate of PG synthesis in chondrocytes and the ensuing high sulfate requirement. We have studied the contribution of cysteine and its derivatives to PG sulfation in fibroblast and chondrocyte cultures from sulfate transporter dysplasia patients. Incubation of ACG1B fibroblasts in medium containing different concentrations of cystine indicated partial recovery of PG sulfation as measured by HPLC disaccharide analysis of chondroitin sulfate PGs; similar results were observed after incubation with N-acetylcysteine. When both compounds were tested in primary chondrocytes from a DTD patient, partial rescue of PG sulfation was observed, suggesting that the metabolic pathways producing cytoplasmic sulfate from thiols are also active in this cell type.


Asunto(s)
Proteínas Portadoras/metabolismo , Condrocitos/metabolismo , Fibroblastos/metabolismo , Proteoglicanos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Acetilcisteína/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patología , Proteínas de Transporte de Anión , Secuencia de Bases , Síndrome de Camurati-Engelmann/genética , Síndrome de Camurati-Engelmann/metabolismo , Síndrome de Camurati-Engelmann/patología , Proteínas Portadoras/genética , Cartílago Articular/patología , Células Cultivadas , Condrocitos/patología , Sulfatos de Condroitina/análisis , Sulfatos de Condroitina/metabolismo , Cromatografía Líquida de Alta Presión , Cistamina/metabolismo , Cisteína/metabolismo , Disacáridos/análisis , Disacáridos/química , Feto , Fibroblastos/patología , Humanos , Proteínas de Transporte de Membrana , Eliminación de Secuencia , Piel/patología , Transportadores de Sulfato , Sulfatos/metabolismo , Sulfatos/farmacocinética
17.
Am J Pathol ; 161(4): 1325-35, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12368206

RESUMEN

The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/embriología , Mutación , Proteínas Tirosina Quinasas , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Hormona Paratiroidea/genética , Transactivadores/genética , Acondroplasia/embriología , Acondroplasia/genética , Acondroplasia/patología , División Celular , Desarrollo Embrionario y Fetal , Fémur/embriología , Genotipo , Placa de Crecimiento/anomalías , Placa de Crecimiento/patología , Proteínas Hedgehog , Humanos , Fenotipo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Displasia Tanatofórica/embriología , Displasia Tanatofórica/genética , Displasia Tanatofórica/patología
18.
Hum Genet ; 110(4): 366-70, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11941487

RESUMEN

Weill-Marchesani syndrome (WMS) is a rare disease characterized by short stature, brachydactyly, joint stiffness, and characteristic eye abnormalities, including microspherophakia, ectopia lentis, and glaucoma. Both autosomal recessive and autosomal dominant modes of inheritance have been described in association with WMS. We have performed a genome-wide search in two large consanguineous families of Lebanese and Saudian origin consistent with an autosomal recessive mode of inheritance. Here, we report the linkage of the disease gene to chromosome 19p13.3-p13.2 (Zmax=5.99 at theta=0 at locus D19S906). A recombination event between loci D19S905 and D19S901 defines the distal boundary, and a second recombination event between loci D19S221 and D19S840 defines the proximal boundary of the genetic interval encompassing the WMS gene (12.4 cM). We hope that our ongoing studies will lead to the identification of the disease-causing gene.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 19 , Homocigoto , Mapeo Cromosómico , Femenino , Ligamiento Genético , Humanos , Masculino , Linaje , Síndrome
19.
Am J Hum Genet ; 74(2): 298-305, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14740318

RESUMEN

Stuve-Wiedemann syndrome (SWS) is a severe autosomal recessive condition characterized by bowing of the long bones, with cortical thickening, flared metaphyses with coarsened trabecular pattern, camptodactyly, respiratory distress, feeding difficulties, and hyperthermic episodes responsible for early lethality. Clinical overlap with Schwartz-Jampel type 2 syndrome (SJS2) has suggested that SWS and SJS2 could be allelic disorders. Through studying a series of 19 families with SWS/SJS2, we have mapped the disease gene to chromosome 5p13.1 at locus D5S418 (Zmax=10.66 at theta =0) and have identified null mutations in the leukemia inhibitory factor receptor (LIFR or gp190 chain) gene. A total of 14 distinct mutations were identified in the 19 families. An identical frameshift insertion (653_654insT) was identified in families from the United Arab Emirates, suggesting a founder effect in that region. It is interesting that 12/14 mutations predicted premature termination of translation. Functional studies indicated that these mutations alter the stability of LIFR messenger RNA transcripts, resulting in the absence of the LIFR protein and in the impairment of the JAK/STAT3 signaling pathway in patient cells. We conclude, therefore, that SWS and SJS2 represent a single clinically and genetically homogeneous condition due to null mutations in the LIFR gene on chromosome 5p13.


Asunto(s)
Mutación , Osteocondrodisplasias/genética , Receptores de Citocinas/genética , Secuencia de Bases , Niño , Cromosomas Humanos Par 5 , Cartilla de ADN , Ligamiento Genético , Humanos , Inmunohistoquímica , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia , Datos de Secuencia Molecular , Receptores OSM-LIF
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA