Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(28)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34234019

RESUMEN

To raise the superconducting-transition temperature (Tc) has been the driving force for the long-sustained effort in superconductivity research. Recent progress in hydrides with Tcs up to 287 K under pressure of 267 GPa has heralded a new era of room temperature superconductivity (RTS) with immense technological promise. Indeed, RTS will lift the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high Tcs. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here, we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient pressure via pressure quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe at ambient) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 d. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.

2.
Nano Lett ; 21(22): 9517-9525, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34729982

RESUMEN

The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.

3.
Environ Res ; 148: 137-143, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27045772

RESUMEN

Diundecyl phthalate (DUP) is a high production volume chemical used as a plasticizer in polyvinyl chloride and other plastics. Specific biomarkers of DUP would be useful for human exposure assessment. To identify such biomarkers, we investigated the in vitro metabolism of DUP with human liver microsomes using online solid phase extraction coupled to HPLC-mass spectrometry. Using high resolution mass spectrometry, we conclusively confirmed the structures of four DUP specific metabolites: monoundecyl phthalate (MUP), mono-hydroxyundecyl phthalate (MHUP), mono-oxoundecyl phthalate (MOUP), and mono-carboxydecyl phthalate (MCDP). We also used high resolution mass spectrometry to isolate MCDP and MHUP from co-eluting isobaric metabolites of diisononyl phthalate (i.e., monocarboxyisononyl phthalate) and diisododecyl phthalate (i.e., monohydroxyisododecyl phthalate), respectively, that could not be separated with low resolution tandem mass spectrometry. To evaluate the potential usefulness of the newly identified DUP metabolites as exposure biomarkers, we analyzed 36 human urine samples by high resolution mass spectrometry. We detected MHUP and MCDP in >83% of the samples; median concentrations were 0.21ng/mL and 0.36ng/mL, respectively. MOUP was detected only in 14% of the samples analyzed, and MUP was not detected. All three metabolites eluted as peak clusters likely because of the presence of multiple oxidation sites and multiple isomers in DUP technical mixtures. Taken together, these findings suggest that with the appropriate mass spectrometry quantification techniques, MHUP and MCDP may serve as suitable biomarkers for assessing background exposure to DUP.


Asunto(s)
Ácidos Ftálicos/orina , Adulto , Animales , Biomarcadores/análisis , Biomarcadores/orina , Cromatografía Líquida de Alta Presión , Exposición a Riesgos Ambientales , Femenino , Humanos , Espectrometría de Masas , Microsomas Hepáticos/química , Ácidos Ftálicos/análisis , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA