Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937105

RESUMEN

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Asunto(s)
Macrófagos/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Anciano , Animales , Apoptosis , Autofagia , Femenino , Corazón/fisiología , Homeostasis , Humanos , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/fisiología , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Fagocitosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa c-Mer/metabolismo
2.
Nat Immunol ; 21(2): 135-144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932813

RESUMEN

The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.


Asunto(s)
Ritmo Circadiano/inmunología , Inflamación/metabolismo , Neutrófilos/metabolismo , Neumonía/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Animales , Degranulación de la Célula/inmunología , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Humanos , Inflamación/inmunología , Ratones , Neutrófilos/inmunología , Neumonía/complicaciones , Neumonía/inmunología , Proteoma/inmunología , Proteoma/metabolismo , Síndrome de Dificultad Respiratoria/inmunología
3.
Nature ; 589(7841): 287-292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268892

RESUMEN

Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/inmunología , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Autoanticuerpos/inmunología , Autoantígenos/inmunología , 1-Pirrolina-5-Carboxilato Deshidrogenasa/sangre , Animales , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Autoanticuerpos/sangre , Autoanticuerpos/genética , Autoantígenos/sangre , Autoinmunidad , Linfocitos B/inmunología , Biomarcadores/sangre , Colesterol/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Lipoproteínas LDL/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Proteómica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Análisis de la Célula Individual
4.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236094

RESUMEN

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Asunto(s)
Fragilidad , Cardiopatías , Hipertensión Pulmonar , Adulto , Animales , ADN Mitocondrial/genética , Fragilidad/patología , Cardiopatías/patología , Heteroplasmia , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones , Mitocondrias/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003361

RESUMEN

Post-translational modifications (PTMs) of proteins are paramount in health and disease. Phosphoproteome analysis by enrichment techniques is becoming increasingly attractive for biomedical research. Recent findings show co-enrichment of other phosphate-containing biologically relevant PTMs, but these results were obtained by closed searches focused on the modifications sought. Open searches are a breakthrough in high-throughput PTM analysis (OS-PTM), identifying practically all PTMs detectable by mass spectrometry, even unknown ones, with their modified sites, in a hypothesis-free and deep manner. Here we reanalyze liver phosphoproteome by OS-PTM, demonstrating its extremely complex nature. We found extensive Lys glycerophosphorylations (pgK), as well as modification with glycerylphosphorylethanolamine on Glu (gpetE) and flavin mononucleotide on His (fmnH). The functionality of these metabolite-derived PTMs is demonstrated during metabolic dysfunction-associated steatotic liver disease (MASLD) development in mice. MASLD elicits specific alterations in pgK, epgE and fmnH in the liver, mainly on glycolytic enzymes and mitochondrial proteins, suggesting an increase in glycolysis and mitochondrial ATP production from the early insulin-resistant stages. Thus, we show new possible mechanisms based on metabolite-derived PTMs leading to intrahepatic lipid accumulation during MASLD development and reinforce phosphoproteome enrichment as a valuable tool with which to study the functional implications of a variety of low-abundant phosphate-containing PTMs in cell physiology.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica , Ratones , Animales , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma , Fosfatos
6.
Mol Cell Proteomics ; 18(9): 1782-1795, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31249105

RESUMEN

The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-ß2 (TGFß2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfß2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.


Asunto(s)
Endocardio/embriología , Endocardio/metabolismo , Válvulas Cardíacas/embriología , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Benzazepinas/farmacología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Endocardio/citología , Endocardio/efectos de los fármacos , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Válvulas Cardíacas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones Mutantes , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Reproducibilidad de los Resultados
7.
Circulation ; 139(7): 949-964, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586718

RESUMEN

BACKGROUND: Senescent cardiomyocytes exhibit a mismatch between energy demand and supply that facilitates their transition toward failing cells. Altered calcium transfer from sarcoplasmic reticulum (SR) to mitochondria has been causally linked to the pathophysiology of aging and heart failure. METHODS: Because advanced glycation-end products accumulate throughout life, we investigated whether intracellular glycation occurs in aged cardiomyocytes and its impact on SR and mitochondria. RESULTS: Quantitative proteomics, Western blot and immunofluorescence demonstrated a significant increase in advanced glycation-end product-modified proteins in the myocardium of old mice (≥20months) compared with young ones (4-6months). Glyoxalase-1 activity (responsible for detoxification of dicarbonyl intermediates) and its cofactor glutathione were decreased in aged hearts. Immunolabeling and proximity ligation assay identified the ryanodine receptor (RyR2) in the SR as prominent target of glycation in aged mice, and the sites of glycation were characterized by quantitative mass spectrometry. RyR2 glycation was associated with more pronounced calcium leak, determined by confocal microscopy in cardiomyocytes and SR vesicles. Interfibrillar mitochondria-directly exposed to SR calcium release-from aged mice had increased calcium content compared with those from young ones. Higher levels of advanced glycation-end products and reduced glyoxalase-1 activity and glutathione were also present in atrial appendages from surgical patients ≥75 years as compared with the younger ones. Elderly patients also exhibited RyR2 hyperglycation and increased mitochondrial calcium content that was associated with reduced myocardial aerobic capacity (mitochondrial O2 consumption/g) attributable to less respiring mitochondria. In contracting HL-1 cardiomyocytes, pharmacological glyoxalase-1 inhibition recapitulated RyR2 glycation and defective SR-mitochondria calcium exchange of aging. CONCLUSIONS: Mitochondria from aging hearts develop calcium overload secondary to SR calcium leak. Glycative damage of RyR2, favored by deficient dicarbonyl detoxification capacity, contributes to calcium leak and mitochondrial damage in the senescent myocardium.


Asunto(s)
Calcio/metabolismo , Senescencia Celular , Productos Finales de Glicación Avanzada/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Señalización del Calcio , Línea Celular , Femenino , Glicosilación , Humanos , Lactoilglutatión Liasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
8.
Circulation ; 140(14): 1188-1204, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31567019

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS: We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS: We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and ß-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and ß-actin, and activation of glycogen synthase kinase-3ß (GSK3ß). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aß1 results in GSK3ß inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3ß inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3ß inhibition. CONCLUSIONS: Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aß1 in TMEM43 mutant mice or chemical GSK3ß inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Disfunción Ventricular/patología , Animales , Calcineurina/genética , Calcineurina/metabolismo , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Ventrículos Cardíacos/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Índice de Severidad de la Enfermedad , Disfunción Ventricular/mortalidad
9.
Bioinformatics ; 35(9): 1594-1596, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252043

RESUMEN

SUMMARY: Mass spectrometry-based proteomics has had a formidable development in recent years, increasing the amount of data handled and the complexity of the statistical resources needed. Here we present SanXoT, an open-source, standalone software package for the statistical analysis of high-throughput, quantitative proteomics experiments. SanXoT is based on our previously developed weighted spectrum, peptide and protein statistical model and has been specifically designed to be modular, scalable and user-configurable. SanXoT allows limitless workflows that adapt to most experimental setups, including quantitative protein analysis in multiple experiments, systems biology, quantification of post-translational modifications and comparison and merging of experimental data from technical or biological replicates. AVAILABILITY AND IMPLEMENTATION: Download links for the SanXoT Software Package, source code and documentation are available at https://wikis.cnic.es/proteomica/index.php/SSP. CONTACT: jvazquez@cnic.es or ebonzon@cnic.es. SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.


Asunto(s)
Proteómica , Programas Informáticos , Espectrometría de Masas , Péptidos , Proteínas
10.
J Immunol ; 197(1): 296-302, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27259858

RESUMEN

Matrix metalloproteases (MMPs) regulate innate immunity acting over proinflammatory cytokines, chemokines, and other immune-related proteins. MMP-25 (membrane-type 6-MMP) is a membrane-bound enzyme predominantly expressed in leukocytes whose biological function has remained largely unknown. We have generated Mmp25-deficient mice to elucidate the in vivo function of this protease. These mutant mice are viable and fertile and do not show any spontaneous phenotype. However, Mmp25-null mice exhibit a defective innate immune response characterized by low sensitivity to bacterial LPS, hypergammaglobulinemia, and reduced secretion of proinflammatory molecules. Moreover, these immune defects can be tracked to a defective NF-κB activation observed in Mmp25-deficient leukocytes. Globally, our findings provide new mechanistic insights into innate immunity through the activity of MMP-25, suggesting that this proteinase could be a potential therapeutic target for immune-related diseases.


Asunto(s)
Hipergammaglobulinemia/inmunología , Leucocitos/inmunología , Metaloproteinasas de la Matriz Asociadas a la Membrana/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Inmunidad Innata/genética , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Metaloproteinasas de la Matriz Asociadas a la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Unión Proteica , Transducción de Señal
11.
Mol Cell Proteomics ; 15(5): 1740-60, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26893027

RESUMEN

The coordinated behavior of proteins is central to systems biology. However, the underlying mechanisms are poorly known and methods to analyze coordination by conventional quantitative proteomics are still lacking. We present the Systems Biology Triangle (SBT), a new algorithm that allows the study of protein coordination by pairwise quantitative proteomics. The Systems Biology Triangle detected statistically significant coordination in diverse biological models of very different nature and subjected to different kinds of perturbations. The Systems Biology Triangle also revealed with unprecedented molecular detail an array of coordinated, early protein responses in vascular smooth muscle cells treated at different times with angiotensin-II. These responses included activation of protein synthesis, folding, turnover, and muscle contraction - consistent with a differentiated phenotype-as well as the induction of migration and the repression of cell proliferation and secretion. Remarkably, the majority of the altered functional categories were protein complexes, interaction networks, or metabolic pathways. These changes could not be detected by other algorithms widely used by the proteomics community, and the vast majority of proteins involved have not been described before to be regulated by AngII. The unique capabilities of The Systems Biology Triangle to detect functional protein alterations produced by the coordinated action of proteins in pairwise quantitative proteomics experiments make this algorithm an attractive choice for the biological interpretation of results on a routine basis.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Biología de Sistemas/métodos , Algoritmos , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Mapas de Interacción de Proteínas
12.
J Proteome Res ; 14(2): 700-10, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25494653

RESUMEN

Peptide identification is increasingly achieved through database searches in which mass precursor tolerance is set in the ppm range. This trend is driven by the high resolution and accuracy of modern mass spectrometers and the belief that the quality of peptide identification is fully controlled by estimating the false discovery rate (FDR) using the decoy-target approach. However, narrowing mass tolerance decreases the number of sequence candidates, and several authors have raised concerns that these search conditions can introduce inaccuracies. Here, we demonstrate that when scores that only depend on one sequence candidate are used, decoy-based estimates of the number of false positive identifications are accurate even with an average number of candidates of just 200, to the point that remarkably accurate FDR predictions can be made in completely different search conditions. However, when scores that are constructed taking information from additional sequence candidates are used together with low precursor mass tolerances, the proportion of peptides incorrectly identified may become significantly higher than the FDR estimated by the target-decoy approach. Our results suggest that with this kind of score the high mass accuracy of modern mass spectrometers should be exploited by using wide mass windows followed by postscoring mass filtering algorithms.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/análisis , Bases de Datos de Proteínas
13.
J Proteome Res ; 13(3): 1234-47, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24512137

RESUMEN

The combination of stable isotope labeling (SIL) with mass spectrometry (MS) allows comparison of the abundance of thousands of proteins in complex mixtures. However, interpretation of the large data sets generated by these techniques remains a challenge because appropriate statistical standards are lacking. Here, we present a generally applicable model that accurately explains the behavior of data obtained using current SIL approaches, including (18)O, iTRAQ, and SILAC labeling, and different MS instruments. The model decomposes the total technical variance into the spectral, peptide, and protein variance components, and its general validity was demonstrated by confronting 48 experimental distributions against 18 different null hypotheses. In addition to its general applicability, the performance of the algorithm was at least similar than that of other existing methods. The model also provides a general framework to integrate quantitative and error information fully, allowing a comparative analysis of the results obtained from different SIL experiments. The model was applied to the global analysis of protein alterations induced by low H2O2 concentrations in yeast, demonstrating the increased statistical power that may be achieved by rigorous data integration. Our results highlight the importance of establishing an adequate and validated statistical framework for the analysis of high-throughput data.


Asunto(s)
Modelos Estadísticos , Proteoma/análisis , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/genética , Minería de Datos , Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Marcaje Isotópico , Anotación de Secuencia Molecular , Isótopos de Oxígeno , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Infect Immun ; 81(7): 2415-25, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630955

RESUMEN

Anaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts.


Asunto(s)
Anaplasma phagocytophilum/patogenicidad , Apoptosis , Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Ixodes/microbiología , Proteínas de Microfilamentos/metabolismo , Anaplasma phagocytophilum/genética , Animales , Proteínas Portadoras/genética , Caspasa 9/genética , Caspasa 9/metabolismo , Línea Celular , Conducta Alimentaria , Femenino , Tracto Gastrointestinal/microbiología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Ixodes/genética , Ixodes/metabolismo , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Filogenia , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glándulas Salivales/microbiología , Espectrina/genética , Espectrina/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
15.
Mol Cell Proteomics ; 10(1): M110.003335, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20807836

RESUMEN

MS-based quantitative proteomics plays an increasingly important role in biological and medical research and the development of these techniques remains one of the most important challenges in mass spectrometry. Numerous stable isotope labeling approaches have been proposed. However, and particularly in the case of (18)O-labeling, a standard protocol of general applicability is still lacking, and statistical issues associated to these methods remain to be investigated. In this work we present an improved high-throughput quantitative proteomics method based on whole proteome concentration by SDS-PAGE, optimized in-gel digestion, peptide (18)O-labeling, and separation by off-gel isoelectric focusing followed by liquid chromatography-LIT-MS. We demonstrate that the off-gel technique is fully compatible with (18)O peptide labeling in any pH range. A recently developed statistical model indicated that partial digestions and methionine oxidation do not alter protein quantification and that variances at the scan, peptide, and protein levels are stable and reproducible in a variety of proteomes of different origin. We have also analyzed the dynamic range of quantification and demonstrated the practical utility of the method by detecting expression changes in a model of activation of Jurkat T-cells. Our protocol provides a general approach to perform quantitative proteomics by (18)O-labeling in high-throughput studies, with the added value that it has a validated statistical model for the null hypothesis. To the best of our knowledge, this is the first report where a general protocol for stable isotope labeling is tested in practice using a collection of samples and analyzed at this degree of statistical detail.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Marcaje Isotópico/métodos , Proteoma/análisis , Proteómica/métodos , Análisis de Varianza , Animales , Línea Celular Tumoral , Fraccionamiento Químico , Citoplasma/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Focalización Isoeléctrica , Metionina/metabolismo , Proteínas de Neoplasias/metabolismo , Oxidación-Reducción , Isótopos de Oxígeno , Péptidos/análisis , Ratas
16.
Cell Death Dis ; 14(1): 60, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702832

RESUMEN

The spindle assembly checkpoint (SAC) is an essential mechanism that ensures the accurate chromosome segregation during mitosis, thus preventing genomic instability. Deubiquitinases have emerged as key regulators of the SAC, mainly by determining the fate of proteins during cell cycle progression. Here, we identify USP49 deubiquitinase as a novel regulator of the spindle checkpoint. We show that loss of USP49 in different cancer cell lines impairs proliferation and increases aneuploidy. In addition, USP49-depleted cells overcome the arrest induced by the SAC in the presence of nocodazole. Finally, we report new binding partners of USP49, including ribophorin 1, USP44, and different centrins.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Humanos , Huso Acromático/metabolismo , Aneuploidia , Mitosis , Enzimas Desubicuitinizantes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
17.
Aging Cell ; 21(3): e13564, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35233924

RESUMEN

Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.


Asunto(s)
Envejecimiento , Mitocondrias Cardíacas , ATPasas de Translocación de Protón Mitocondriales , Miocitos Cardíacos , Adenosina Trifosfato/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Calcio/metabolismo , Dimerización , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo
18.
Redox Biol ; 52: 102306, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367810

RESUMEN

Titin, as the main protein responsible for the passive stiffness of the sarcomere, plays a key role in diastolic function and is a determinant factor in the etiology of heart disease. Titin stiffness depends on unfolding and folding transitions of immunoglobulin-like (Ig) domains of the I-band, and recent studies have shown that oxidative modifications of cryptic cysteines belonging to these Ig domains modulate their mechanical properties in vitro. However, the relevance of this mode of titin mechanical modulation in vivo remains largely unknown. Here, we describe the high evolutionary conservation of titin mechanical cysteines and show that they are remarkably oxidized in murine cardiac tissue. Mass spectrometry analyses indicate a similar landscape of basal oxidation in murine and human myocardium. Monte Carlo simulations illustrate how disulfides and S-thiolations on these cysteines increase the dynamics of the protein at physiological forces, while enabling load- and isoform-dependent regulation of titin stiffness. Our results demonstrate the role of conserved cysteines in the modulation of titin mechanical properties in vivo and point to potential redox-based pathomechanisms in heart disease.


Asunto(s)
Cardiopatías , Sarcómeros , Animales , Conectina/química , Cisteína/metabolismo , Elasticidad , Cardiopatías/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Oxidación-Reducción , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Sarcómeros/metabolismo
19.
EBioMedicine ; 76: 103874, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35152150

RESUMEN

BACKGROUND: Imaging of subclinical atherosclerosis improves cardiovascular risk prediction on top of traditional risk factors. However, cardiovascular imaging is not universally available. This work aims to identify circulating proteins that could predict subclinical atherosclerosis. METHODS: Hypothesis-free proteomics was used to analyze plasma from 444 subjects from PESA cohort study (222 with extensive atherosclerosis on imaging, and 222 matched controls) at two timepoints (three years apart) for discovery, and from 350 subjects from AWHS cohort study (175 subjects with extensive atherosclerosis on imaging and 175 matched controls) for external validation. A selected three-protein panel was further validated by immunoturbidimetry in the AWHS population and in 2999 subjects from ILERVAS cohort study. FINDINGS: PIGR, IGHA2, APOA, HPT and HEP2 were associated with subclinical atherosclerosis independently from traditional risk factors at both timepoints in the discovery and validation cohorts. Multivariate analysis rendered a potential three-protein biomarker panel, including IGHA2, APOA and HPT. Immunoturbidimetry confirmed the independent associations of these three proteins with subclinical atherosclerosis in AWHS and ILERVAS. A machine-learning model with these three proteins was able to predict subclinical atherosclerosis in ILERVAS (AUC [95%CI]:0.73 [0.70-0.74], p < 1 × 10-99), and also in the subpopulation of individuals with low cardiovascular risk according to FHS 10-year score (0.71 [0.69-0.73], p < 1 × 10-69). INTERPRETATION: Plasma levels of IGHA2, APOA and HPT are associated with subclinical atherosclerosis independently of traditional risk factors and offers potential to predict this disease. The panel could improve primary prevention strategies in areas where imaging is not available. FUNDING: This study was supported by competitive grants from the Spanish Ministry of Science, Innovation and Universities (BIO2015-67580-P, PGC2018-097019-B-I00, PID2019-106814RB-I00 and SAF2016-80843-R), through the Carlos III Institute of Health-Fondo de Investigacion Sanitaria grant PRB3 (IPT17/0019 - ISCIII-SGEFI / ERDF, ProteoRed), CIBERCV and CIBERDEM, the Fundacio MaratoTV3 (grant 122/C/2015) and "la Caixa" Banking Foundation (project HR17-00247). The PESA study is co-funded equally by the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, and Banco Santander, Madrid, Spain. The ILERVAS study was funded by the Diputacio de Lleida. The study also receives funding from the Instituto de Salud Carlos III (PI15/02019; PI18/00610; RD16/0009) and the FEDER funds. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovacion y Universidades (MCNU) and the Pro CNIC Foundation.


Asunto(s)
Aterosclerosis , Proteómica , Aterosclerosis/diagnóstico , Biomarcadores , Estudios de Cohortes , Humanos , Factores de Riesgo
20.
Antioxidants (Basel) ; 10(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34679670

RESUMEN

Aging is a continuous, universal, and irreversible process that determines progressive loss of adaptability. The liver is a critical organ that supports digestion, metabolism, immunity, detoxification, vitamin storage, and hormone signaling. Nevertheless, the relationship between aging and the development of liver diseases remains elusive. In fact, although prolonged fasting in adult rodents and humans delays the onset of the disease and increases longevity, whether prolonged fasting could exert adverse effects in old organisms remains incompletely understood. In this work, we aimed to characterize the oxidative stress and nuclear proteome in the liver of 3-month- and 24-month-old male Wistar rats upon 36 h of fasting and its adaptation in response to 30 min of refeeding. To this end, we analyzed the hepatic lipid peroxidation levels (TBARS) and the expression levels of genes associated with fat metabolism and oxidative stress during aging. In addition, to gain a better insight into the molecular and cellular processes that characterize the liver of old rats, the hepatic nuclear proteome was also evaluated by isobaric tag quantitation (iTRAQ) mass spectrometry-based proteomics. In old rats, aging combined with prolonged fasting had great impact on lipid peroxidation in the liver that was associated with a marked downregulation of antioxidant genes (Sod2, Fmo3, and Cyp2C11) compared to young rats. Besides, our proteomic study revealed that RNA splicing is the hepatic nuclear biological process markedly affected by aging and this modification persists upon refeeding. Our results suggest that aged-induced changes in the nuclear proteome could affect processes associated with the adaptative response to refeeding after prolonged fasting, such as those involved in the defense against oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA