Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Clin Microbiol ; 62(6): e0034524, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38757981

RESUMEN

Viral enrichment by probe hybridization has been reported to significantly increase the sensitivity of viral metagenomics. This study compares the analytical performance of two targeted metagenomic virus capture probe-based methods: (i) SeqCap EZ HyperCap by Roche (ViroCap) and (ii) Twist Comprehensive Viral Research Panel workflow, for diagnostic use. Sensitivity, specificity, and limit of detection were analyzed using 25 synthetic viral sequences spiked in increasing proportions of human background DNA, eight clinical samples, and American Type Culture Collection (ATCC) Virome Virus Mix. Sensitivity and specificity were 95% and higher for both methods using the synthetic and reference controls as gold standard. Combining thresholds for viral sequence read counts and genome coverage [respectively 500 reads per million (RPM) and 10% coverage] resulted in optimal prediction of true positive results. Limits of detection were approximately 50-500 copies/mL for both methods as determined by ddPCR. Increasing proportions of spike-in cell-free human background sequences up to 99.999% (50 ng/mL) did not negatively affect viral detection, suggesting effective capture of viral sequences. These data show analytical performances in ranges applicable to clinical samples, for both probe hybridization metagenomic approaches. This study supports further steps toward more widespread use of viral metagenomics for pathogen detection, in clinical and surveillance settings using low biomass samples. IMPORTANCE: Viral metagenomics has been gradually applied for broad-spectrum pathogen detection of infectious diseases, surveillance of emerging diseases, and pathogen discovery. Viral enrichment by probe hybridization methods has been reported to significantly increase the sensitivity of viral metagenomics. During the past years, a specific hybridization panel distributed by Roche has been adopted in a broad range of different clinical and zoonotic settings. Recently, Twist Bioscience has released a new hybridization panel targeting human and animal viruses. This is the first report comparing the performance of viral metagenomic hybridization panels.


Asunto(s)
Metagenómica , Sensibilidad y Especificidad , Virus , Humanos , Metagenómica/métodos , Metagenómica/normas , Virus/genética , Virus/aislamiento & purificación , Virus/clasificación , Virosis/diagnóstico , Virosis/virología , Estándares de Referencia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Límite de Detección , Hibridación de Ácido Nucleico/métodos , Viroma
2.
BMC Cancer ; 24(1): 104, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238650

RESUMEN

BACKGROUND: Colibactin, a genotoxin produced by polyketide synthase harboring (pks+) bacteria, induces double-strand breaks and chromosome aberrations. Consequently, enrichment of pks+Escherichia coli in colorectal cancer and polyposis suggests a possible carcinogenic effect in the large intestine. Additionally, specific colibactin-associated mutational signatures; SBS88 and ID18 in the Catalogue of Somatic Mutations in Cancer database, are detected in colorectal carcinomas. Previous research showed that a recurrent APC splice variant perfectly fits SBS88. METHODS: In this study, we explore the presence of colibactin-associated signatures and fecal pks in an unexplained polyposis cohort. Somatic targeted Next-Generation Sequencing (NGS) was performed for 379 patients. Additionally, for a subset of 29 patients, metagenomics was performed on feces and mutational signature analyses using Whole-Genome Sequencing (WGS) on Formalin-Fixed Paraffin Embedded (FFPE) colorectal tissue blocks. RESULTS: NGS showed somatic APC variants fitting SBS88 or ID18 in at least one colorectal adenoma or carcinoma in 29% of patients. Fecal metagenomic analyses revealed enriched presence of pks genes in patients with somatic variants fitting colibactin-associated signatures compared to patients without variants fitting colibactin-associated signatures. Also, mutational signature analyses showed enrichment of SBS88 and ID18 in patients with variants fitting these signatures in NGS compared to patients without. CONCLUSIONS: These findings further support colibactins ability to mutagenize colorectal mucosa and contribute to the development of colorectal adenomas and carcinomas explaining a relevant part of patients with unexplained polyposis.


Asunto(s)
Adenoma , Carcinoma , Neoplasias Colorrectales , Policétidos , Humanos , Mutación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Péptidos/genética , Escherichia coli/genética , Adenoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA