Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 110(5): 1056-1068, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34843173

RESUMEN

The angle-ply multilaminate structure of the annulus fibrosus is not reestablished following discectomy which leads to reherniation of the intervertebral disc (IVD). Biomimetic scaffolds developed to repair these defects should be evaluated for their ability to support tissue regeneration by endogenous and exogenous cells. Herein a collagen-based, angle-ply multilaminate patch designed to repair the outer annulus fibrosus was assessed for its ability to support mesenchymal stromal and annulus fibrosus cell viability, elongation, alignment, extracellular matrix gene expression, and scaffold remodeling. Results demonstrated that the cells remained viable, elongated, and aligned along the collagen fiber preferred direction of the scaffold, upregulated genes associated with annulus fibrosus matrix and produced collagen on the scaffold yielding biaxial mechanical properties that resembled native annulus fibrosus tissue. In conclusion, these scaffolds have demonstrated their potential to promote a living repair of defects in the annulus fibrosus and thus may be used to prevent recurrent IVD herniations.


Asunto(s)
Anillo Fibroso , Disco Intervertebral , Supervivencia Celular , Colágeno , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Cicatrización de Heridas
2.
J Biomed Mater Res A ; 109(7): 1232-1246, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33040470

RESUMEN

Intervertebral disc (IVD) degeneration (IVDD) leads to structural and functional changes. Biomaterials for restoring IVD function and promoting regeneration are currently being investigated; however, such approaches require validation using animal models that recapitulate clinical, biochemical, and biomechanical hallmarks of the human pathology. Herein, we comprehensively characterized a sheep model of chondroitinase-ABC (ChABC) induced IVDD. Briefly, ChABC (1 U) was injected into the L1/2 , L2/3 , and L3/4 IVDs. Degeneration was assessed via longitudinal magnetic resonance (MR) and radiographic imaging. Additionally, kinematic, biochemical, and histological analyses were performed on explanted functional spinal units (FSUs). At 17-weeks, ChABC treated IVDs demonstrated significant reductions in MR index (p = 0.030) and disc height (p = 0.009) compared with pre-operative values. Additionally, ChABC treated IVDs exhibited significantly increased creep displacement (p = 0.004) and axial range of motion (p = 0.007) concomitant with significant decreases in tensile (p = 0.034) and torsional (p = 0.021) stiffnesses and long-term viscoelastic properties (p = 0.016). ChABC treated IVDs also exhibited a significant decrease in NP glycosaminoglycan: hydroxyproline ratio (p = 0.002) and changes in microarchitecture, particularly in the NP and endplates, compared with uninjured IVDs. Taken together, this study demonstrated that intradiscal injection of ChABC induces significant degeneration in sheep lumbar IVDs and the potential for using this model in evaluating biomaterials for IVD repair, regeneration, or fusion.


Asunto(s)
Condroitina ABC Liasa/metabolismo , Modelos Animales de Enfermedad , Degeneración del Disco Intervertebral/patología , Disco Intervertebral/patología , Ovinos , Animales , Materiales Biocompatibles/uso terapéutico , Fenómenos Biomecánicos , Condroitina ABC Liasa/administración & dosificación , Femenino , Disco Intervertebral/diagnóstico por imagen , Disco Intervertebral/enzimología , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/enzimología , Degeneración del Disco Intervertebral/terapia , Imagen por Resonancia Magnética , Masculino , Ensayo de Materiales , Ovinos/fisiología
3.
J Mech Behav Biomed Mater ; 95: 41-52, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30953808

RESUMEN

Focal defects in the annulus fibrosus (AF) of the intervertebral disc (IVD) arising from herniation have detrimental impacts on the IVD's mechanical function. Thus, biomimetic-based repair strategies must restore the mechanical integrity of the AF to help support and restore native spinal loading and motion. Accordingly, an annulus fibrosus repair patch (AFRP); a collagen-based multi-laminate scaffold with an angle-ply architecture has been previously developed, which demonstrates similar mechanical properties to native outer AF (oAF). To further enhance the mimetic nature of the AFRP, interlamellar (ILM) glycosaminoglycan (GAG) was incorporated into the scaffolds. The ability of the scaffolds to withstand simulated impact loading and resist herniation of native IVD tissue while contributing to the restoration of spinal kinematics were assessed separately. The results demonstrate that incorporation of a GAG-based ILM significantly increased (p < 0.001) the impact strength of the AFRP (2.57 ±â€¯0.04 MPa) compared to scaffolds without (1.51 ±â€¯0.13 MPa). Additionally, repair of injured functional spinal units (FSUs) with an AFRP in combination with sequestering native NP tissue and a full-thickness AF tissue plug enabled the restoration of creep displacement (p = 0.134), short-term viscous damping coefficient (p = 0.538), the long-term viscous (p = 0.058) and elastic (p = 0.751) damping coefficients, axial neutral zone (p = 0.908), and axial range of motion (p = 0.476) to an intact state. Lastly, the AFRP scaffolds were able to prevent native IVD tissue herniation upon application of supraphysiologic loads (5.28 ±â€¯1.24 MPa). Together, these results suggest that the AFRP has the strength to sequester native NP and AF tissue and/or implants, and thus, can be used in a composite repair strategy for IVDs with focal annular defects thereby assisting in the restoration of spinal kinematics.


Asunto(s)
Anillo Fibroso/efectos de los fármacos , Materiales Biocompatibles/farmacología , Desplazamiento del Disco Intervertebral/prevención & control , Fenómenos Mecánicos/efectos de los fármacos , Andamios del Tejido/química , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Bovinos
4.
J Orthop Res ; 37(11): 2445-2456, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31287173

RESUMEN

Intervertebral disc degeneration (IVDD) is a progressive condition marked by tissue destruction and inflammation. The therapeutic effector functions of mesenchymal stem cells (MSCs) makes them an attractive therapy for patients with IVDD. While several sources of MSCs exist, the optimal choice for use in the inflamed IVD remains a significant question. Adipose (AD)- and amnion (AM)-derived MSCs have several advantages compared with other sources, however, no study has directly compared the impact of IVDD inflammation on their effector functions. Human MSCs were cultured in media with or without supplementation of interleukin-1ß (IL-1ß) and tumor necrosis factor-α at concentrations reportedly produced by IVDD cells. MSC proliferation and production of pro- and anti-inflammatory cytokines were quantified following 24 and 48 h of culture. Additionally, the osteogenic and chondrogenic potential of AD- and AM-MSCs was characterized via histology and biochemical analysis following 28 days of culture. In inflammatory culture, AM-MSCs produced significantly more anti-inflammatory IL-10 (14.47 ± 2.39 pg/ml; p = 0.004) and larger chondrogenic pellets (5.67 ± 0.26 mm2 ; p = 0.04) with greater percent area staining positively for glycosaminoglycan (82.03 ± 3.26%; p < 0.001) compared with AD-MSCs (0.00 ± 0.00 pg/ml; 2.76 ± 0.18 mm2 ; 34.75 ± 2.49%; respectively). Conversely, AD-MSCs proliferated more resulting in higher cell numbers (221,000 ± 8,021 cells; p = 0.048) and produced higher concentrations of pro-inflammatory cytokines prostaglandin E2 (1,118.30 ± 115.56 pg/ml; p = 0.030) and IL-1ß (185.40 ± 7.63 pg/ml; p = 0.010) compared with AM-MSCs (109,667 ± 5,696 cells; 1,291.40 ± 78.47 pg/ml; 144.10 ± 4.57 pg/ml; respectively). AD-MSCs produced more mineralized extracellular matrix (3.34 ± 0.05 relative absorbance units [RAU]; p < 0.001) compared with AM-MSCs (1.08 ± 0.06 RAU). Under identical inflammatory conditions, a different effector response was observed with AM-MSCs producing more anti-inflammatories and demonstrating enhanced chondrogenesis compared with AD-MSCs, which produced more pro-inflammatory cytokines and demonstrated enhanced osteogenesis. These findings may begin to help inform researchers which MSC source may be optimal for IVD regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2445-2456, 2019.


Asunto(s)
Tejido Adiposo/citología , Amnios/citología , Inflamación/fisiopatología , Degeneración del Disco Intervertebral/terapia , Células Madre Mesenquimatosas/fisiología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Embarazo
5.
J Tissue Eng Regen Med ; 11(12): 3488-3493, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27943659

RESUMEN

One major limitation of intervertebral disc (IVD) repair is that no ideal biomaterial has been developed that effectively mimics the angle-ply collagen architecture and mechanical properties of the native annulus fibrosus (AF). Furthermore, it would be beneficial to devise a simple, scalable process by which to manufacture a biomimetic biomaterial that could function as a mechanical repair patch to be secured over a large defect in the outer AF that will support AF tissue regeneration. Such a biomaterial would: (1) enable the employment of early-stage interventional strategies to treat IVD degeneration (i.e. nucleus pulposus arthroplasty); (2) prevent IVD re-herniation in patients with large AF defects; and (3) serve as a platform to develop full-thickness AF and whole IVD tissue engineering strategies. Due to the innate collagen fibre alignment and mechanical strength of pericardium, a procedure was developed to assemble multi-laminate angle-ply AF patches derived from decellularized pericardial tissue. Patches were subsequently assessed histologically to confirm angle-ply microarchitecture, and mechanically assessed for biaxial burst strength and tensile properties. Additionally, patch cytocompatibility was evaluated following seeding with bovine AF cells. This study demonstrated the effective removal of porcine cell remnants from the pericardium, and the ability to reliably produce multi-laminate patches with angle-ply architecture using a simple assembly technique. Resultant patches demonstrated their inherent ability to resist biaxial burst pressures reminiscent of intradiscal pressures commonly borne by the AF, and exhibited tensile strength and modulus values reported for native human AF. Furthermore, the biomaterial supported AF cell viability, infiltration and proliferation. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Anillo Fibroso/fisiología , Colágeno/farmacología , Regeneración/efectos de los fármacos , Medicina Regenerativa/métodos , Animales , Fenómenos Biomecánicos , Pericardio/metabolismo , Sus scrofa
6.
Acta Biomater ; 58: 254-268, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28587986

RESUMEN

Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability. STATEMENT OF SIGNIFICANCE: The quality of life for millions of individuals globally is detrimentally impacted by IVD degeneration and herniation. These pathologies often result in the structural demise of IVD tissue, particularly the annulus fibrosus (AF). Biomaterials developed for AF repair have yet to demonstrate the mechanical strength and durability required for utilization in the spine. Herein, we demonstrate the development of an angle-ply AF repair patch (AFRP) that can resist the application of physiologically relevant stresses without failure and which contributes to the restoration of functional spinal unit axial kinematics following repair. Furthermore, we show that this biomaterial can resist accelerated degradation in a simulated degenerate environment and supports AF cell viability.


Asunto(s)
Disco Intervertebral , Estrés Mecánico , Andamios del Tejido/química , Animales , Fenómenos Biomecánicos , Bovinos , Humanos , Disco Intervertebral/química , Disco Intervertebral/citología , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA