Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38 Suppl 1: e9523, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37070167

RESUMEN

Schistosomes are blood flukes with specialised tissues and organs, each one playing a pivotal role in perpetuating the parasite life cycle. Herein, we describe a detailed methodology for preserving the proteome of adult Schistosoma mansoni worms during manual dissection for enrichment of tissues associated with the parasite's alimentary tract. We provide step-by-step directions for specimen storage and dissection while in preservative solution, tissue homogenisation, protein extraction and digestion using a methodology fully compatible with downstream quantitative liquid chromatography-mass spectrometry analysis. Our methodology uses label-free and QconCAT-based absolute quantification for detection of S. mansoni oesophageal gland products proposed as vaccine candidates. Through stabilisation of the proteome and minimising sample degradation during dissection our approach has allowed us to access the hidden proteome of target tissues not readily available from total lysates because of their small volume. This protocol can be replicated or adapted to other Schistosoma species lacking quantitative proteomics characterisation of specialised tissues for discovery of proteins with potential diagnostic and therapeutic utility.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Proteómica , Animales , Proteómica/métodos , Cromatografía Liquida , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Schistosoma mansoni/química , Schistosoma mansoni/metabolismo
2.
Bull Entomol Res ; 113(5): 684-692, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37545328

RESUMEN

Major efforts to control the population of Aedes aegypti mosquitoes involve the use of synthetic insecticides, which can be harmful to the environment. Most plant compounds are eco-friendly and some of them have biocontrol potential, whereas a fraction of these compounds is released into the environment through the leaf-leaching process. We evaluated the effects of secondary compounds from Ateleia glazioviana and Eucalyptus grandis senescent leaf leachates on Ae. aegypti larval mortality, adult emergence time, and wing size using a microcosm approach. The microcosms consisted of 10 larvae kept in water (control) and under four treatments with leachates from a combination of plant species and leaching time (7 or 14 days). Chemical analyses of the leachates showed the presence of carboxaldehyde and Heptatriocotanol, which have antimicrobial properties, potentially reducing the food available for larvae. ß-Sitosterol, Stigmasterol, α-Amyrin, and Lupeol are compounds with inhibitory, neurotoxic, and larvicidal effects. Both plant species' leachates increased larval mortality and decreased emergence time due to the presence of compounds toxic to the larvae. Larger organisms emerged in treatments with 7-days leachates, likely due to the high concentration of dissolved organic matter in the leachates. The higher mortality in 7-days leachates may also increase the organic matter from co-specific decomposition, improving adult size. Therefore, if the mosquito population is not locally extinct, compounds present in leaf leachates may act as a resource enhancing larvae growth, potentially increasing survivors' fitness. In conclusion, biocontrol attempts using urban green spaces may have unexpected outcomes, such as resulting in larger pest organisms.


Asunto(s)
Aedes , Anopheles , Culex , Fabaceae , Insecticidas , Animales , Extractos Vegetales/farmacología , Hojas de la Planta/química , Insecticidas/farmacología , Larva
3.
BMC Health Serv Res ; 23(1): 825, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533030

RESUMEN

BACKGROUND: In Brazil, despite advances in public health policies aimed at eliminating and controlling infectious and parasitic diseases, the incidence of neglected diseases is still high. The epidemiological scenario in Brazil of diseases such as tuberculosis and leprosy evidences a public policy agenda that has not been resolute in terms of control, nor in terms of elimination. OBJECTIVE: To analyze the actions of diagnosis and treatment of leprosy and tuberculosis in the context of primary health care. METHODS: In this ecological study, data from the third cycle of the Program for the Improvement of Access and Quality of Primary Care were extracted from electronic address of the Primary Health Care Secretariat of Brazil in the area of Actions, Programs and Strategies. A total of 37,350 primary health care teams were that answered the questionnaire were eligible, with variables extracted from leprosy and tuberculosis control actions. The municipalities were grouped according to the characteristic of the Brazilian municipality. The partition chi-square and the Residuals Test were used to assess whether there was a difference in the proportion of tuberculosis and leprosy actions between types of municipalities. Statistics were carried out using Minitab 20 and Bioestat 5.3. RESULTS: Regarding the leprosy treatment location, there is a higher proportion of people referred to be treated at the reference in adjacent rural (p = 0.0097) and urban (p < 0.0001) municipalities; monitoring of people with leprosy referred to the service network (p. = 0.0057) in remote rural areas. Lower proportion of teams requesting bacilloscopy in remote rural areas (p = 0.0019). Rural areas have a higher proportion of teams that diagnose new cases (p = 0.0004). Regarding the actions of diagnosis and treatment of tuberculosis. There is a higher proportion of teams that carry out consultations at the unit itself in rural areas when compared to adjacent intermediaries (p = 0.0099) and urban (p < 0.0001); who requested sputum smear microscopy in adjacent intermediaries (p = 0.0021); X-ray in adjacent intermediaries (p < 0.0001) and urban (p < 0.0001); collection of the first sputum sample in urban (p < 0.0001) and adjacent rural areas (p < 0.0001); directly observed treatment (p < 0.0001) in adjacent rural municipalities. CONCLUSION: There are inequalities in the diagnosis and treatment of leprosy and tuberculosis among the types of municipalities.


Asunto(s)
Lepra , Tuberculosis , Humanos , Brasil/epidemiología , Tuberculosis/epidemiología , Lepra/diagnóstico , Lepra/epidemiología , Lepra/prevención & control , Ciudades , Atención Primaria de Salud
4.
Expert Rev Proteomics ; 19(4-6): 247-261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36331139

RESUMEN

INTRODUCTION: Schistosomes are long-lived blood dwelling helminth parasites using intricate mechanisms to invade, mature, and reproduce inside their vertebrate hosts, whilst simultaneously deploying immune evasion strategies. Their multi-tissue organization and solid body plan presents particular problems for the definition of sub-proteomes. AREAS COVERED: Here, we focus on the two host-parasite interfaces of the adult worm accessible to the immune system, namely the tegument and the alimentary tract, but also on the secretions of the infective cercaria, the migrating schistosomulum and the mature egg. In parallel, we introduce the concepts of "leakyome' and 'disintegrome' to emphasize the importance of interpreting data in the context of schistosome biology so that misleading conclusions about the distinct proteome compositions are avoided. Lastly, we highlight the possible clinical implications of the reviewed proteomic findings for pathogenesis, vaccine design and diagnostics. EXPERT OPINION: Proteomics has provided considerable insights into the biology of schistosomes, most importantly for rational selection of novel vaccine candidates that might confer protective immunity, but also into the pathogenesis of schistosomiasis. However, given the increasing sensitivity of mass spectrometric instrumentation, we stress the need for care in data interpretation since schistosomes do not deviate from the fundamental rules of eukaryotic cell biology.


Asunto(s)
Esquistosomiasis , Vacunas , Animales , Proteómica/métodos , Proteínas del Helminto , Schistosoma , Esquistosomiasis/parasitología , Esquistosomiasis/prevención & control , Proteoma/genética
5.
FASEB J ; 35(5): e21509, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33813781

RESUMEN

Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.


Asunto(s)
5'-Nucleotidasa/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Caveolina 1/metabolismo , Células Dendríticas/inmunología , Leishmaniasis/inmunología , Microdominios de Membrana/inmunología , Receptor de Adenosina A2B/metabolismo , Animales , Células Dendríticas/metabolismo , Células Dendríticas/parasitología , Células Dendríticas/patología , Inmunidad , Inmunomodulación , Leishmania/inmunología , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Leishmaniasis/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/patología , Masculino , Microdominios de Membrana/parasitología , Microdominios de Membrana/patología , Ratones , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499574

RESUMEN

Carboxycellulose nanofibers (CNFs) promise to be a sustainable and inexpensive alternative material for polymer electrolyte membranes compared to the expensive commercial Nafion membrane. However, its practical applications have been limited by its relatively low performance and reduced mechanical properties under typical operating conditions. In this study, carboxycellulose nanofibers were derived from wood pulp by TEMPO oxidation of the hydroxyl group present on the C6 position of the cellulose chain. Then, citric acid cross-linked CNF membranes were prepared by a solvent casting method to enhance performance. Results from FT-IR spectroscopy, 13C NMR spectroscopy, and XRD reveal a chemical cross-link between the citric acid and CNF, and the optimal fuel cell performance was obtained by cross-linking 70 mL of 0.20 wt % CNF suspension with 300 µL of 1.0 M citric acid solution. The membrane electrode assemblies (MEAs), operated in an oxygen atmosphere, exhibited the maximum power density of 27.7 mW cm-2 and the maximum current density of 111.8 mA cm-2 at 80 °C and 100% relative humidity (RH) for the citric acid cross-linked CNF membrane with 0.1 mg cm-2 Pt loading on the anode and cathode, which is approximately 30 times and 22 times better, respectively, than the uncross-linked CNF film. A minimum activation energy of 0.27 eV is achieved with the best-performing citric acid cross-linked CNF membrane, and a proton conductivity of 9.4 mS cm-1 is obtained at 80 °C. The surface morphology of carboxycellulose nanofibers and corresponding membranes were characterized by FIB/SEM, SEM/EDX, TEM, and AFM techniques. The effect of citric acid on the mechanical properties of the membrane was assessed by tensile strength DMA.


Asunto(s)
Nanofibras , Espectroscopía Infrarroja por Transformada de Fourier , Nanofibras/química , Celulosa/química , Resistencia a la Tracción , Ácido Cítrico
7.
Mem Inst Oswaldo Cruz ; 116: e200326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34008737

RESUMEN

BACKGROUND: Schistosomiasis is a disease caused by Schistosoma. Due to its complex life cycle, evolutionary position and sexual dimorphism, schistosomes have several mechanisms of gene regulation. MicroRNAs (miRNAs) are short endogenous RNAs that regulate gene expression at the post-transcriptional level by targeting mRNA transcripts. OBJECTIVES: Here, we tested 12 miRNAs and identified their putative targets using a computational approach. METHODS: We performed the expression profiles of a set of miRNAs and their putative targets during the parasite's life cycle by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). FINDINGS: Our results showed differential expression patterns of the mature miRNAs sma-miR-250; sma-miR-92a; sma-miR-new_4-3p; sma-miR-new_4-5p; sma-miR-new_5-5p; sma-miR-new_12-5p; sma-miR-new_13-3p and sma-miR-new_13-5p. Interestingly, many of the putative target genes are linked to oxidative phosphorylation and are up-regulated in adult-worms, which led us to suggest that miRNAs might play important roles in the post-transcriptional regulation of genes related to energetic metabolism inversion during parasite development. It is noteworthy that the expression of sma-miR-new_13-3p exhibited a negative correlation on SmNADH:ubiquinone oxidoreductase complex I. MAIN CONCLUSIONS: Our analysis revealed putative miRNA genes related to important biological processes, such as transforming growth factor beta (TGF-ß) signaling, proteasome regulation, glucose and lipid metabolism, immune system evasion and transcriptional regulation.


Asunto(s)
MicroARNs , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Estadios del Ciclo de Vida/genética , MicroARNs/genética , Schistosoma mansoni/genética , Transducción de Señal
8.
J Proteome Res ; 19(1): 314-326, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31729880

RESUMEN

Schistosomes are blood-dwelling helminth parasites that cause schistosomiasis, a debilitating disease resulting in inflammation and, in extreme cases, multiple organ damage. Major challenges to control the transmission persist, and the discovery of protective antigens remains of critical importance for vaccine development. Rhesus macaques can self-cure following schistosome infection, generating antibodies that target proteins from the tegument, gut, and esophagus, the last of which is the least investigated. We developed a dissection technique that permitted increased sensitivity in a comparative proteomics profiling of schistosome esophagus and gut. Proteome analysis of the male schistosome esophagus identified 13 proteins encoded by microexon genes (MEGs), 11 of which were uniquely located in the esophageal glands. Based on this and transcriptome information, a QconCAT was designed for the absolute quantification of selected targets. MEGs 12, 4.2, and 4.1 and venom allergen-like protein 7 were the most abundant, spanning over 245 million to 6 million copies per cell, while aspartyl protease, palmitoyl thioesterase, and galactosyl transferase were present at <1 million copies. Antigenic variation by alternative splicing of MEG proteins was confirmed together with a specialized machinery for protein glycosylation/secretion in the esophagus. Moreover, some gastrodermal secretions were highly enriched in the gut, while others were more uniformly distributed throughout the parasite, potentially indicating lysosomal activity. Collectively, our findings provide a more rational, better-oriented selection of schistosome vaccine candidates in the context of a proven model of protective immunity.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Proteínas del Helminto/metabolismo , Proteómica/métodos , Schistosoma mansoni/metabolismo , Animales , Esófago/metabolismo , Ontología de Genes , Proteínas del Helminto/análisis , Proteínas del Helminto/genética , Masculino , Ratones , Schistosoma mansoni/patogenicidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
9.
Mem Inst Oswaldo Cruz ; 114: e180478, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30942278

RESUMEN

The population of Brazil is currently characterised by many individuals harbouring low-intensity Schistosoma mansoni infections. The Kato-Katz technique is the diagnostic method recommended by the World Health Organization (WHO) to assess these infections, but this method is not sensitive enough in the context of low egg excretion. In this regard, potential alternatives are being employed to overcome the limits of the Kato-Katz technique. In the present review, we evaluated the performance of parasitological and immunological approaches adopted in Brazilian areas. Currently, the diagnostic choices involve a combination of strategies, including the utilisation of antibody methods to screen individuals and then subsequent confirmation of positive cases by intensive parasitological investigations.


Asunto(s)
Anticuerpos Antihelmínticos/análisis , Antígenos Helmínticos/análisis , Técnicas de Laboratorio Clínico/métodos , Heces/parasitología , Schistosoma mansoni , Esquistosomiasis mansoni/diagnóstico , Animales , Brasil/epidemiología , Enfermedades Endémicas , Humanos , Técnicas para Inmunoenzimas , Recuento de Huevos de Parásitos , Schistosoma mansoni/inmunología , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/epidemiología , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
10.
BMC Biotechnol ; 18(1): 83, 2018 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-30594179

RESUMEN

BACKGROUND: Proteomics is an important tool for the investigation of dynamic physiological responses of microbes under heavy metal stress. To gain insight into how bacteria respond to manganese (II) and identify the proteins involved in Mn (II) oxidation, the shotgun proteomics approach was applied to a potential Mn (II)-oxidizing Serratia marcescens strain cultivated in the absence and presence of Mn (II). RESULTS: The LG1 strain, which grew equally well in the two conditions, was found to express a set of proteins related to cellular processes vital for survival, as well as proteins involved in adaptation and tolerance to Mn (II). The multicopper oxidase CueO was identified, indicating its probable participation in the Mn (II) bio-oxidation; however, its expression was not modulated by the presence of Mn (II). A set of proteins related to cell and metabolic processes vital to the cells were downregulated in the presence of Mn (II), while cell membrane-related proteins involved in the maintenance of cell integrity and survival under stress were upregulated under this condition. CONCLUSIONS: These findings indicate that the LG1 strain may be applied successfully in the bioremediation of Mn (II), and the shotgun approach provides an efficient means for obtaining the total proteome of this species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Manganeso/metabolismo , Serratia marcescens/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteómica , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/crecimiento & desarrollo
11.
Biochim Biophys Acta ; 1864(12): 1775-1786, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693249

RESUMEN

The PR-11 peptide corresponds to the N-terminal and active region of the endogenously synthesized PR-39 molecule, of porcine origin. It is known to possess various biological effects including antimicrobial properties, angiogenic and anti-inflammatory activities. Apart from its reported activity as a proteasome inhibitor, a more comprehensive understanding of its function, at the molecular level, is still lacking. In this study, we used a label-free shotgun strategy to evaluate the proteomic alterations caused by exposure of cultured fibroblasts to the peptide PR-11. This approach revealed that more than half of the identified molecules were related to signalling, transcription and translation. Proteins directly associated to regulation of angiogenesis and interaction with the hypoxia-inducible factor 1-α (HIF-1α) were significantly altered. In addition, at least three differentially expressed molecules of the NF-κB pathway were detected, suggesting an anti-inflammatory property of PR-11. At last, we demonstrated novel potential ligands of PR-11, through its immobilization for affinity chromatography. Among the eluted molecules, gC1qR, a known complement receptor, appeared markedly enriched. This provided preliminary evidence of a PR-11 ligand possibly involved in the internalization of this peptide. Altogether, our findings contributed to a better understanding of the cellular pathways affected by PR-39 derived molecules.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Inmovilizadas/metabolismo , Proteínas Inmovilizadas/farmacología , Ligandos , Espectrometría de Masas , Proteínas Mitocondriales/metabolismo , FN-kappa B/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Inhibidores de Proteasoma/metabolismo , Inhibidores de Proteasoma/farmacología , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica , Ratas , Ratas Wistar , Porcinos
12.
J Appl Toxicol ; 42(4): 553-569, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34636049

RESUMEN

The demand for food has intensified production in agricultural areas and stimulated the use of nanotechnology to develop new inputs, especially nanoparticle materials. In this new context, predicting the impact of using nanoparticles on non-target organisms becomes a necessary measure. The aim of this study was to evaluate the ecotoxicological potential of magnesium (Mg2+ ) added via magnesium oxide nanoparticles (MgO-NPs), magnesium oxide (MgO), and magnesium nitrate hexahydrate (Mg [NO3 ]2 ·6H2 O) incubated over time in tropical soil on earthworms (Eisenia andrei), springtails (Folsomia candida), and enchytraeids (Enchytraeus crypticus). Tests were conducted using a clay-textured Latossolo Vermelho distrófico (Oxisol), which received increasing doses of Mg2+ (0; 25; 50; 100; 200 and 400 mg kg−1 of soil) from the three sources tested added to the soil. Treated soil was incubated for 120 days in a room with controlled temperature and photoperiod, and the ecotoxicological tests were performed at 0, 60, and 120 days of incubation. Despite having caused reduction in the reproduction of F. candida at the incubation time 0, MgO-NPs showed a low toxic potential against the other species studied, with toxicity only at a higher dose of 50 mg Mg kg−1 when compared to the other sources of Mg2+ applied to the soil (MgO and Mg [NO3 ]2 ·6H2 O). Responses associated with incubation times showed that all magnesium sources tested have lower toxicity over incubation time.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Ecotoxicología , Óxido de Magnesio , Nanopartículas/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
13.
Parasitol Res ; 116(10): 2765-2773, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28840376

RESUMEN

VIP36 is a protein described as an L-type lectin in animals, responsible for the intracellular transport of glycoproteins within the secretory pathway, and also localized on the plasma membrane. Schistosoma mansoni has a complex system of vesicles and protein transport machinery to the cell surface. The excreted/secreted products of the larvae and eggs are known to be exposed to the host immune system. Hence, characterizing the role and action of SmVIP36 in the S. mansoni life cycle is important for a better understanding of the parasite-host relationship. To this purpose, we firstly performed in silico analysis. Analysis of SmVIP36 in silico revealed that it contains a lectin leg-like domain with a jellyroll fold as seen by its putative 3D tertiary structure. Additionally, it was also observed that its CRD contains calcium ion-binding amino acids, suggesting that the binding of SmVIP36 to glycoproteins is calcium-dependent. Finally, we observed that the SmVIP36 predicted amino acid sequence relative to its orthologs was conserved. However, phylogenetic analysis revealed that SmVIP36 follows species evolution, forming a further cluster with its definitive host Homo sapiens. Moreover, q-PCR analysis in the S. mansoni life cycle points to a significant increase in gene expression in the eggs, schistosomulae, and female adult stages. Similarly, protein expression increased in eggs, cercariae, schistosomulae, and adult worm stages. These results suggest that SmVIP36 might participate in the complex secretory activity within the egg envelope and tegument proteins, both important for the stages of the parasite that interact with the host.


Asunto(s)
Proteínas del Helminto/genética , Lectinas/genética , Proteínas de la Membrana/genética , Schistosoma mansoni/crecimiento & desarrollo , Schistosoma mansoni/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Femenino , Expresión Génica , Proteínas del Helminto/metabolismo , Humanos , Lectinas/metabolismo , Estadios del Ciclo de Vida , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Schistosoma mansoni/clasificación , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/parasitología
14.
PLoS Pathog ; 10(8): e1004246, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25121497

RESUMEN

Schistosomes are parasitic flatworms that infect >200 million people worldwide, causing the chronic, debilitating disease schistosomiasis. Unusual among parasitic helminths, the long-lived adult worms, continuously bathed in blood, take up nutrients directly across the body surface and also by ingestion of blood into the gut. Recent proteomic analyses of the body surface revealed the presence of hydrolytic enzymes, solute, and ion transporters, thus emphasising its metabolic credentials. Furthermore, definition of the molecular mechanisms for the uptake of selected metabolites (glucose, certain amino acids, and water) establishes it as a vital site of nutrient acquisition. Nevertheless, the amount of blood ingested into the gut per day is considerable: for males ∼100 nl; for the more actively feeding females ∼900 nl, >4 times body volume. Ingested erythrocytes are lysed as they pass through the specialized esophagus, while leucocytes become tethered and disabled there. Proteomics and transcriptomics have revealed, in addition to gut proteases, an amino acid transporter in gut tissue and other hydrolases, ion, and lipid transporters in the lumen, implicating the gut as the site for acquisition of essential lipids and inorganic ions. The surface is the principal entry route for glucose, whereas the gut dominates amino acid acquisition, especially in females. Heme, a potentially toxic hemoglobin degradation product, accumulates in the gut and, since schistosomes lack an anus, must be expelled by the poorly understood process of regurgitation. Here we place the new observations on the proteome of body surface and gut, and the entry of different nutrient classes into schistosomes, into the context of older studies on worm composition and metabolism. We suggest that the balance between surface and gut in nutrition is determined by the constraints of solute diffusion imposed by differences in male and female worm morphology. Our conclusions have major implications for worm survival under immunological or pharmacological pressure.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Schistosoma/fisiología , Animales , Femenino , Humanos , Masculino , Esquistosomiasis/fisiopatología
15.
Parasitol Res ; 115(10): 3951-61, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27344453

RESUMEN

Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor ß, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.


Asunto(s)
Genoma de los Helmintos/genética , Receptores Notch/genética , Schistosoma mansoni/genética , Esquistosomiasis mansoni/parasitología , Transducción de Señal , Transcriptoma , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Biología Computacional , Diaminas/farmacología , Femenino , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Óvulo/efectos de los fármacos , Receptores Notch/metabolismo , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/fisiología , Caracoles , Tiazoles/farmacología
16.
J Proteome Res ; 14(1): 385-96, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25369245

RESUMEN

Dibenzothiophene (DBT) and its oxidized derivative dibenzothiophene sulfone (DBTO2) are important representatives of polycyclic aromatic hydrocarbons (PAHs). Due to the importance of PAHs in oncogenesis and the lack of toxicological investigations related to DBT and DBTO2, this work proposes to assess their toxic and molecular effects caused by chronic treatment of Wistar rats. In parallel, their effects were compared to those caused by treatment with 1,2-dimethylhydrazine (DMH), a classic mutagenic agent. At the 14th day post-treatment, the animals were sacrificed and blood withdrawn for hematology and evaluation of liver and pancreatic functions. No significant alterations were observed. Nevertheless, histopathological analyses revealed dysplastic lesions in the intestines of animals treated with DBT and DBTO2. CD44 and carcinoembryonic antigen (CEA) staining demonstrated an approximately 3-fold increase in expression of both tissue markers for animals administered DBT, DBTO2, and DMH. A comparative two-dimensional gel analysis revealed additional 23 proteins exhibiting altered levels in the small intestines caused by exposure to DBT and DBTO2. At last, a protein-metabolite interaction map provided major insights into the metabolism of the dysplastic tissues. Our results provided strong evidence that DBT and its derivative could potentially act as cancer inducers, highlighting their toxicological and environmental relevance.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Tiofenos/toxicidad , Alanina Transaminasa/sangre , Amilasas/sangre , Animales , Proteínas de Arabidopsis , Aspartato Aminotransferasas/sangre , Antígeno Carcinoembrionario/metabolismo , Ciclinas , Electroforesis en Gel Bidimensional , Procesamiento de Imagen Asistido por Computador , Intestino Delgado/patología , Ratas , Ratas Wistar
17.
Parasitol Res ; 114(8): 2835-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25924794

RESUMEN

The ubiquitination and deubiquitination of proteins can alter diverse cellular processes, such as proteolysis, trafficking, subcellular localisation, DNA repair, apoptosis and signal transduction. Deubiquitinating enzymes (DUBs) are responsible for removing ubiquitin from their target proteins. Previous reports have shown the presence of two subfamilies of DUBs in Schistosoma mansoni: Ub carboxyl-terminal hydrolase (UCH) and Ub-specific protease (USP). In this study, we analysed the ovarian tumour (OTU) and Machado-Joseph disease protein domain (MJD) proteases found in the Schistosoma mansoni genome database. An in silico analysis identified two different MJD subfamily members, SmAtaxin-3 and SmJosephin, and five distinct OTU proteases, SmOTU1, SmOTU3, SmOTU5a, SmOTU6b and SmOtubain. The phylogenetic analysis showed the evolutionary conservation of these proteins. Furthermore, the 3D structures confirmed the similarity of these proteins with human proteins. In addition, we performed quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and observed distinct expression profiles for all of the investigated transcripts between the cercariae, schistosomula and adult worm stages. Taken together, our data suggest that MJD and OTU subfamily members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite.


Asunto(s)
Endopeptidasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Schistosoma mansoni/enzimología , Animales , Cercarias , Femenino , Proteínas del Helminto/metabolismo , Humanos , Estadios del Ciclo de Vida , Filogenia , Schistosoma mansoni/genética , Schistosoma mansoni/crecimiento & desarrollo , Ubiquitinación
18.
Parasitol Res ; 114(5): 1769-77, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25663106

RESUMEN

Ubiquitin-conjugating enzymes (Ub-E2) perform the second step of ubiquitination and, consequently, are essential for regulating proteolysis and for modulating protein function, interactions and trafficking. Previously, our group demonstrated the crucial role of ubiquitination and the Ub-proteasome pathway during the Schistosoma mansoni life cycle. In the present investigation, we used a homology-based genome-wide bioinformatics approach to identify and molecularly characterise the Ub-E2 enzymes in S. mansoni. The putative functions were further investigated through molecular phylogenetic and expression profile analyses using cercariae, adult worms, eggs and mechanically transformed schistosomula (MTS) cultured in vitro for 3.5 h or 1 or 3 days. We identified, via in silico analysis, 17 Ub-E2 enzymes with conserved structural characteristics: the beta-sheet and the helix-2 form a central core bordered by helix-1 at one side and helix-3 and helix-4 at the other. The observed quantitative differences in the steady-state transcript levels between the cercariae and adult worms may contribute to the differential protein ubiquitination observed during the parasite's life cycle. This study is the first to identify and characterise the E2 ubiquitin conjugation family in S. mansoni and provides fundamental information regarding their molecular phylogenetics and developmental expression during intra-mammalian stages.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas del Helminto/metabolismo , Schistosoma mansoni/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Cercarias/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Helminto/genética , Estadios del Ciclo de Vida/fisiología , Filogenia , Complejo de la Endopetidasa Proteasomal/genética , Schistosoma mansoni/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
19.
Mem Inst Oswaldo Cruz ; 109(1): 1-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24271000

RESUMEN

Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite's genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite.


Asunto(s)
Endopeptidasas/genética , Schistosoma mansoni/enzimología , Ubiquitina Tiolesterasa/genética , Animales , Cercarias/enzimología , Cercarias/genética , Secuencia Conservada/genética , Evolución Molecular , Expresión Génica , Genoma/genética , Genoma de los Helmintos/genética , Estadios del Ciclo de Vida/genética , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/crecimiento & desarrollo , Alineación de Secuencia , Transcriptoma/fisiología , Transcitosis/fisiología , Ubiquitina Tiolesterasa/clasificación , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/fisiología
20.
Parasitol Res ; 113(8): 2887-97, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24870249

RESUMEN

The trematode Schistosoma mansoni, an important parasite of humans, is the principle agent of the disease schistosomiasis. In the human host, one of the most important stress factors of this parasite is the oxidative stress generated by both the metabolism of the worm and the immune system of the host. The proteasomal system is responsible for protein homeostasis during oxidative stress. The 26S proteasome is a multicatalytic protease formed by two compartments, a 20S core and regulatory particle 19S, and controls the degradation of intracellular proteins, hence regulating many cellular processes. In the present report, we describe the biochemical characterization and role of the 20S proteasome in the response of adult S. mansoni worms exposed to hydrogen peroxide. Characterization of the response to the oxidative stress included the evaluation of viability, egg production, mortality, tegument integrity, and both expression and activity of proteasome. We observed decreases in viability, egg production as well as 100% mortality at the higher concentrations of hydrogen peroxide tested. The main changes observed in the tegument of adult worms were peeling as well as the appearance of bubbles and a decrease of spines on the tubercles. Furthermore, there were increases in 26S activity to the same extent as 20S proteasome activity, although there was increase of 20S proteasome content, suggesting that degradation of protein oxidized in adult worms is due to the 20S proteasome. It was demonstrated that adult S. mansoni worms are sensitive to oxidative stress, and that a variety of processes in this parasite are altered under this condition. The work contributes to a better understanding of the mechanisms employed by S. mansoni to survive under oxidative stress.


Asunto(s)
Proteínas del Helminto/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/fisiología , Schistosoma mansoni/fisiología , Animales , Peróxido de Hidrógeno , Microscopía Electrónica de Rastreo , Óvulo/fisiología , Schistosoma mansoni/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA