Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 22(8): 2608-2619, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37450889

RESUMEN

During the COVID-19 pandemic, impaired immunity and medical interventions resulted in cases of secondary infections. The clinical difficulties and dangers associated with secondary infections in patients necessitate the exploration of their microbiome. Metaproteomics is a powerful approach to study the taxonomic composition and functional status of the microbiome under study. In this study, the mass spectrometry (MS)-based data of nasopharyngeal swab samples from COVID-19 patients was used to investigate the metaproteome. We have established a robust bioinformatics workflow within the Galaxy platform, which includes (a) generation of a tailored database of the common respiratory tract pathogens, (b) database search using multiple search algorithms, and (c) verification of the detected microbial peptides. The microbial peptides detected in this study, belong to several opportunistic pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Rhizopus microsporus, and Syncephalastrum racemosum. Microbial proteins with a role in stress response, gene expression, and DNA repair were found to be upregulated in severe patients compared to negative patients. Using parallel reaction monitoring (PRM), we confirmed some of the microbial peptides in fresh clinical samples. MS-based clinical metaproteomics can serve as a powerful tool for detection and characterization of potential pathogens, which can significantly impact the diagnosis and treatment of patients.


Asunto(s)
COVID-19 , Coinfección , Humanos , COVID-19/diagnóstico , Pandemias , Péptidos , Nasofaringe
2.
OMICS ; 28(1): 24-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193774

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc globally. Beyond the pandemic, the long-term effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in multiple organ systems are yet to be deciphered. This calls for continued systems science research. Moreover, the host response to SARS-CoV-2 varies person-to-person and gives rise to different degrees of morbidity and mortality. Mass spectrometry (MS) has been a proven asset in studies of the SARS-CoV-2 from an omics systems science lens. To strengthen the proteomics research dedicated to COVID-19, we introduce here a web-based portal, CoVProt. The portal is work in progress and aims for a comprehensive curation of MS-based proteomics data of COVID-19 clinical samples for deep proteomic investigations, data visualization, and easy data accessibility for life sciences innovations and planetary health research community. Currently, CoVProt contains information on 2725 different proteins and 37,125 different peptides from six data sets covering a total of 202 clinical samples. Moreover, all pertinent data sets extracted from the literature have been reanalyzed using a common analysis pipeline developed by combining multiple tools. Going forward, we anticipate that the CoVProt portal will also provide access to the clinical parameters of the patients. The CoVProt (v1.0) portal addresses an existing significant gap to study COVID-19 host proteomics, which, to the best of our knowledge, is the first effort in this direction. We believe that CoVProt is poised to make contributions as a community resource for proteomic applications and aims to broadly support clinical studies to facilitate the discovery of COVID-19 biomarkers and therapeutics with translational potential.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Proteómica/métodos , Espectrometría de Masas , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA