Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(18): 183201, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204888

RESUMEN

Laser-driven recollision physics is typically accessible only at field intensities high enough for tunnel ionization. Using an extreme ultraviolet pulse for ionization and a near-infrared (NIR) pulse for driving of the electron wave packet lifts this limitation. This allows us to study recollisions for a broad range of NIR intensities with transient absorption spectroscopy, making use of the reconstruction of the time-dependent dipole moment. Comparing recollision dynamics with linear vs circular NIR polarization, we find a parameter space, where the latter favors recollisions, providing evidence for the so far only theoretically predicted recolliding periodic orbits.

2.
Phys Rev Lett ; 129(18): 183204, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374686

RESUMEN

We report the measurement of the photoelectron angular distribution of two-photon single-ionization near the 2p^{2} ^{1}D^{e} double-excitation resonance in helium, benchmarking the fundamental nonlinear interaction of two photons with two correlated electrons. This observation is enabled by the unique combination of intense extreme ultraviolet pulses, delivered at the high-repetition-rate free-electron laser in Hamburg (FLASH), ionizing a jet of cryogenically cooled helium atoms in a reaction microscope. The spectral structure of the intense self-amplified spontaneous emission free-electron laser pulses has been resolved on a single-shot level to allow for post selection of pulses, leading to an enhanced spectral resolution, and introducing a new experimental method. The measured angular distribution is directly compared to state-of-the-art theory based on multichannel quantum defect theory and the streamlined R-matrix method. These results and experimental methodology open a promising route for exploring fundamental interactions of few photons with few electrons in general.

3.
Phys Rev Lett ; 123(16): 163201, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702368

RESUMEN

We report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry. The experimental results obtained at the Free-Electron Laser in Hamburg (FLASH) thus correspond to transient energy shifts on the order of a few meV, induced by strong XUV fields. These results open up a new way of performing nonperturbative XUV nonlinear optics for the light-matter interaction of resonant electronic transitions in atoms at short wavelengths.

4.
Sci Adv ; 9(47): eadk1482, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37992169

RESUMEN

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses. Here, we combine a broadband XUV probe pulse from high-order harmonic generation with an FEL pump pulse to observe dissociation pathways leading to fragments in different quantum states. We temporally resolve the dissociation of a specific O2+ state into two competing channels by measuring the resonances of ionic and neutral fragments. This scheme can be applied to investigate convoluted dynamics in larger molecules relevant to diverse science fields.

5.
Rev Sci Instrum ; 90(5): 053108, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31153289

RESUMEN

Measuring bound-state quantum dynamics, excited and driven by strong fields, is achievable by time-resolved absorption spectroscopy. Here, a vacuum beamline for spectroscopy in the attosecond temporal and extreme ultraviolet (XUV) spectral range is presented, which is a tool for observing and controlling nonequilibrium electron dynamics. In particular, we introduce a technique to record an XUV absorption signal and the corresponding reference simultaneously, which greatly improves the signal quality. The apparatus is based on a common beam path design for XUV and near-infrared (NIR) laser light in a vacuum. This ensures minimal spatiotemporal fluctuations between the strong NIR laser and the XUV excitation and reference beams, while the grazing incidence optics enable broadband spectral coverage. The apparatus combines high spectral and temporal resolution together with an increase in sensitivity to weak absorption signatures by an order of magnitude. This opens up new possibilities for studying strong-field-driven electron dynamics in bound systems on their natural attosecond time scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA