RESUMEN
Although HIV-specific CD8 T cells are effective in controlling HIV infection, they fail to clear infection even in the presence of antiretroviral therapy (ART) and cure strategies such as "shock-and-kill." Little is known how ART is contributing to HIV-specific CD8 T cell function and the ability to clear HIV infection. Therefore, we first assessed the cytokine polyfunctionality and proliferation of CD8 T cells from ART-treated HIV+ individuals directly ex vivo and observed a decline in the multifunctional response as well as proliferation indices of these cells in individuals treated with integrase inhibitor (INSTI) based ART regimens compared to both protease inhibitor (PI) and nonnucleoside reverse transcriptase inhibitor (NNRTI) based regimens. We next cocultured CD8 T cells with different drugs individually and were able to observe reduced functional properties with significantly decreased ability of CD8 T cells to express IFN-γ, MIP1ß and TNF-α only after treatment with INSTI-based regimens. Furthermore, previously activated and INSTI-treated CD8 T cells demonstrated reduced capacity to express perforin and granzyme B compared to PI and NNRTI treated cells. Unexpectedly, CD8 T cells treated with dolutegravir showed a similar killing ability 7 dpi compared to emtricitabine or rilpivirine treated cells. We next used a live cell imaging assay to determine the migratory capacity of CD8 T cells. Only INSTI-treated cells showed less migratory activity after SDF-1α stimulation compared to NRTI regimens. Our data show that the choice of ART can have a significant impact on CD8 T cell effector functions, but the importance for potential eradication attempts is unknown. IMPORTANCE Integrase Strand Transfer Inhibitors (INSTI) are recommended by national and international guidelines as a key component of ART in the treatment of HIV infected patients. In particular, their efficacy, tolerability and low drug-drug interaction profile have made them to the preferred choice as part of the first-line regimen in treatment-naive individuals. Here, we demonstrate that the choice of ART can have a significant impact on function and metabolism of CD8 T cells. In summary, our study provides first evidence on a significant, negative impact on CD8 T cell effector functions in the presence of two INSTIs, dolutegravir and elvitegravir, which may contribute to the limited success of eradicating HIV-infected cells through "shock-and-kill" strategies. Although our findings are coherent with recent studies highlighting a possible role of dolutegravir in weight gain, further investigations are necessary to fully understand the impact of INSTI-based regimens on the health of the individual during antiretroviral therapy.
Asunto(s)
Linfocitos T CD8-positivos , Infecciones por VIH , Inhibidores de Integrasa VIH , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/farmacología , Humanos , Inhibidores de la Transcriptasa Inversa/uso terapéuticoRESUMEN
BACKGROUND AND AIMS: Given the early response of neutrophil granulocytes to infections, detection of pathological neutrophil migration might help in predicting adverse events in patients with liver cirrhosis. METHODS: Migration of blood neutrophils in hospitalized patients with cirrhosis was characterized by a novel standardized migration assay. Pathological neutrophil migration patterns were associated with a composite endpoint of ACLF, sepsis or death within 7 or 30 days. RESULTS: Overall, 125 patients were included, of whom 11 (8.8%) had compensated cirrhosis, 84 (67.2%) had acute decompensation (AD) and 30 (24%) had acute-on-chronic liver failure (ACLF). The migration response of neutrophils from patients with AD or ACLF to stimulation with the chemotactic formylpeptide f-Met-Leu-Phe (fMLP) was significantly impaired, while the response to chemokine (C-X-C motif)-ligand 8 (CXCL8) was affected less pronouncedly. In contrast, no relevant differences in response to CXCL1 were observed. Of note, neutrophils of a number of patients with AD and ACLF were largely immotile at resting and stimulated conditions. Patients with non-migrating neutrophils at unstimulated conditions were at high risk to develop the composite endpoint of ACLF, sepsis or death. Moreover, expression of chemokine receptors CXCR1 and CXCR2 was significantly decreased in patients with ACLF. Interestingly, the expression of chemokine receptors did not correlate with neutrophil migration patterns, but-based on the increased expression of the cell surface markers CD66b and CD177-neutrophils of patients with AD and ACLF were strongly pre-activated. CONCLUSION: Pathological neutrophil migration in patients with cirrhosis indicates a high risk of developing adverse outcomes.
Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Sepsis , Humanos , Neutrófilos , Cirrosis Hepática/complicaciones , Fibrosis , Receptores de Quimiocina , Sepsis/complicaciones , PronósticoRESUMEN
OBJECTIVE: To study the role of α4ß7 integrin for gut homing of monocytes and to explore the biological consequences of therapeutic α4ß7 inhibition with regard to intestinal wound healing. DESIGN: We studied the expression of homing markers on monocyte subsets in the peripheral blood and on macrophage subsets in the gut of patients with IBD and controls with flow cytometry and immunohistochemistry. Integrin function was addressed with dynamic adhesion assays and in vivo gut homing assays. In vivo wound healing was studied in mice deficient for or depleted of α4ß7 integrin. RESULTS: Classical and non-classical monocytes were clearly dichotomous regarding homing marker expression including relevant expression of α4ß7 integrin on human and mouse non-classical monocytes but not on classical monocytes. Monocyte-expressed α4ß7 integrin was functionally important for dynamic adhesion to mucosal vascular addressin cell adhesion molecule 1 and in vivo gut homing. Impaired α4ß7-dependent gut homing was associated with reduced (effect size about 20%) and delayed wound healing and suppressed perilesional presence of wound healing macrophages. Non-classical monocytes in the peripheral blood were increased in patients with IBD under clinical treatment with vedolizumab. CONCLUSION: In addition to reported effects on lymphocytes, anti-α4ß7 therapy in IBD also targets non-classical monocytes. Impaired gut homing of such monocytes might lead to a reduction of wound healing macrophages and could potentially explain increased rates of postoperative complications in vedolizumab-treated patients, which have been observed in some studies.
Asunto(s)
Enfermedades Inflamatorias del Intestino/patología , Integrinas/fisiología , Intestinos/patología , Monocitos/fisiología , Cicatrización de Heridas/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Estudios de Casos y Controles , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Quimiotaxis de Leucocito/fisiología , Femenino , Fármacos Gastrointestinales/farmacología , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Enfermedades Inflamatorias del Intestino/fisiopatología , Integrinas/antagonistas & inhibidores , Integrinas/sangre , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Adulto JovenRESUMEN
BACKGROUND: The identification of pathologically altered neutrophil granulocyte migration patterns bears strong potential for surveillance and prognostic scoring of diseases. We recently identified a strong correlation between impaired neutrophil motility and the disease stage of myelodysplastic syndrome (MDS). Here, we apply this assay to study quantitively increased neutrophils of a patient suffering from a rare leukemia subtype, atypical chronic myeloid leukemia (aCML). METHODS: A 69-year-old male was analyzed in this study. Besides routine analyses, we purified the patient's neutrophils from peripheral whole blood and studied their migration behavior using time-lapse video microscopy in a standardized assay. These live cell migration analyses also allowed for the quantification of cell morphology. Furthermore, the cells were stained for the markers CD15, CD16, fMLPR, CXCR1 and CXCR2. RESULTS: Despite cytoreductive therapy with hydroxyurea, the patient's WBC and ANC were poorly controlled and severe dysgranulopoiesis with hypogranularity was observed. Neutrophils displayed strongly impaired migration when compared to healthy controls and migrating cells exhibited a more flattened-out morphology than control neutrophils. Because of a detected CSF3R (p.T618I) mutation and constitutional symptoms treatment with ruxolitinib was initiated. Within 1 week of ruxolitinib treatment, the cell shape normalized and remained indistinguishable from healthy control neutrophils. However, neutrophil migration did not improve over the course of ruxolitinib therapy but was strikingly altered shortly before a sinusitis with fever and bleeding from a gastric ulcer. Molecular work-up revealed that under ruxolitinib treatment, the CSF3R clone was depleted, yet the expansion of a NRAS mutated subclone was promoted. CONCLUSION: These results demonstrate the usefulness of neutrophil migration analyses to uncover corresponding alterations of neutrophil migration in rare myeloid neoplasms. Furthermore, in addition to monitoring migration the determination of morphological features of live neutrophils might represent a useful tool to monitor the effectiveness of therapeutic approaches.
Asunto(s)
Biomarcadores de Tumor/genética , Movimiento Celular , Granulocitos/patología , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/tratamiento farmacológico , Neutrófilos/patología , Pirazoles/efectos adversos , Anciano , Estudios de Casos y Controles , Femenino , Granulocitos/efectos de los fármacos , Granulocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/patología , Estudios Longitudinales , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Nitrilos , Pronóstico , PirimidinasRESUMEN
Autonomous migration is a central characteristic of immune cells, and changes in this function have been correlated to the progression and severity of diseases. Hence, the identification of pathologically altered leukocyte migration patterns might be a promising approach for disease surveillance and prognostic scoring. However, because of the lack of standardized and robust assays, migration patterns have not been clinically exploited so far. In this study, we introduce an easy-to-use and cross-laboratory, standardized two-dimensional migration assay for neutrophil granulocytes from peripheral blood. By combining time-lapse video microscopy and automated cell tracking, we calculated the average migration of neutrophils from 111 individual participants of the German Heinz Nixdorf Recall MultiGeneration study under steady-state, formyl-methionyl-leucyl-phenylalanine-, CXCL1-, and CXCL8-stimulated conditions. Comparable values were obtained in an independent laboratory from a cohort in Belgium, demonstrating the robustness and transferability of the assay. In a double-blinded retrospective clinical analysis, we found that neutrophil migration strongly correlated with the Revised International Prognostic Scoring System scoring and risk category of myelodysplastic syndrome (MDS) patients. In fact, patients suffering from high-risk subtypes MDS with excess blasts I or II displayed highly significantly reduced neutrophil migration. Hence, the determination of neutrophil migration patterns might represent a useful tool in the surveillance of MDS. Taken together, we suggest that standardized migration assays of neutrophils and other leukocyte subtypes might be broadly applicable as prognostic and surveillance tools for MDS and potentially for other diseases.
Asunto(s)
Células Sanguíneas/inmunología , Síndromes Mielodisplásicos/inmunología , Neutrófilos/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Movimiento Celular , Células Cultivadas , Quimiocina CXCL1/metabolismo , Femenino , Humanos , Vigilancia Inmunológica , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/diagnóstico , Pronóstico , Riesgo , Adulto JovenRESUMEN
INTRODUCTION: Many cancer guidelines include sentinel lymph node (SLN) staging to identify microscopic metastatic disease. Current SLN analysis of melanoma patients is effective but has the substantial drawback that only a small representative portion of the node is sampled, whereas most of the tissue is discarded. This might explain the high clinical false-negative rate of current SLN diagnosis in melanoma. Furthermore, the quantitative assessment of metastatic load and microanatomical localisation might yield prognosis with higher precision. Thus, methods to analyse entire SLNs with cellular resolution apart from tedious sequential physical sectioning are required. PATIENTS AND METHODS: Eleven melanoma patients eligible to undergo SLN biopsy were included in this prospective study. SLNs were fixed, optically cleared, whole-mount stained and imaged using light sheet fluorescence microscopy (LSFM). Subsequently, compatible and unbiased gold standard histopathological assessment allowed regular patient staging. This enabled intrasample comparison of LSFM and histological findings. In addition, the development of an algorithm, RAYhance, enabled easy-to-handle display of LSFM data in a browsable histologic slide-like fashion. RESULTS: We comprehensively quantify total tumour volume while simultaneously visualising cellular and anatomical hallmarks of the associated SLN architecture. In a first-in-human study of 21 SLN of melanoma patients, LSFM not only confirmed all metastases identified by routine histopathological assessment but also additionally revealed metastases not detected by routine histology alone. This already led to additional therapeutic options for one patient. CONCLUSION: Our three-dimensional digital pathology approach can increase sensitivity and accuracy of SLN metastasis detection and potentially alleviate the need for conventional histopathological assessment in the future. GERMAN CLINICAL TRIALS REGISTER: (DRKS00015737).
Asunto(s)
Imagenología Tridimensional/métodos , Metástasis Linfática/patología , Melanoma/patología , Microscopía Fluorescente/métodos , Estadificación de Neoplasias/métodos , Ganglio Linfático Centinela/patología , Humanos , Metástasis Linfática/diagnósticoRESUMEN
Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immunocompromised humans, caused by the opportunistic fungal pathogen Aspergillus fumigatus. Inadequacies in current diagnostic procedures mean that early diagnosis of the disease, critical to patient survival, remains a major clinical challenge, and is leading to the empiric use of antifungal drugs and emergence of azole resistance. A non-invasive procedure that allows both unambiguous detection of IPA and its response to azole treatment is therefore needed. Here, we show that a humanised Aspergillus-specific monoclonal antibody, dual labelled with a radionuclide and fluorophore, can be used in immunoPET/MRI in vivo in a neutropenic mouse model and 3D light sheet fluorescence microscopy ex vivo in the infected mouse lungs to quantify early A. fumigatus lung infections and to monitor the efficacy of azole therapy. Our antibody-guided approach reveals that early drug intervention is critical to prevent complete invasion of the lungs by the fungus, and demonstrates the power of molecular imaging as a non-invasive procedure for tracking IPA in vivo.
Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Antifúngicos/uso terapéutico , Aspergillus fumigatus/inmunología , Pulmón/efectos de los fármacos , Pulmón/diagnóstico por imagen , Radiofármacos/inmunología , Animales , Anticuerpos Antifúngicos/química , Anticuerpos Antifúngicos/inmunología , Anticuerpos Monoclonales Humanizados/química , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/patogenicidad , Azoles/uso terapéutico , Radioisótopos de Cobre/química , Monitoreo de Drogas , Colorantes Fluorescentes/química , Humanos , Aspergilosis Pulmonar Invasiva/diagnóstico por imagen , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/microbiología , Pulmón/microbiología , Imagen por Resonancia Magnética , Ratones , Microscopía Fluorescente , Tomografía de Emisión de Positrones , Radioinmunodetección , Radiofármacos/químicaRESUMEN
Cardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy. This allows structural analyses of fluorescence-labeled I/R hearts with exceptional detail. We discover and 3D-quantify distinguishable acute and late vascular I/R damage zones. These contain highly localized and spatially structured neutrophil infiltrates that are modulated upon cardiac healing. Our model demonstrates that these characteristic I/R injury patterns can detect the extent of damage even days after the ischemic index event hence allowing the investigation of long-term recovery and remodeling processes.
Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Miocardio/patología , Animales , Biopsia , Cinamatos/química , Puente de Arteria Coronaria , Modelos Animales de Enfermedad , Humanos , Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/cirugía , Miocardio/citología , Miocardio/inmunología , Neutrófilos/inmunología , Proteína Fluorescente RojaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Closed circulatory systems (CCS) underlie the function of vertebrate organs, but in long bones their structure is unclear, although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil emigration from BM, we studied the vascular system of murine long bones. Here we show that hundreds of capillaries originate in BM, cross murine cortical bone perpendicularly along the shaft and connect to the periosteal circulation. Structures similar to these trans-cortical-vessels (TCVs) also exist in human limb bones. TCVs express arterial or venous markers and transport neutrophils. Furthermore, over 80% arterial and 59% venous blood passes through TCVs. Genetic and drug-mediated modulation of osteoclast count and activity leads to substantial changes in TCV numbers. In a murine model of chronic arthritic bone inflammation, new TCVs develop within weeks. Our data indicate that TCVs are a central component of the CCS in long bones and may represent an important route for immune cell export from the BM.
Asunto(s)
Huesos/irrigación sanguínea , Capilares/fisiología , Microcirculación , Flujo Sanguíneo Regional , Animales , Médula Ósea/irrigación sanguínea , Humanos , Ratones , Ratones Endogámicos DBARESUMEN
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo.