Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 40(7): 1440-1452, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31826942

RESUMEN

Neuronal diversity provides the spinal cord with the functional flexibility required to perform complex motor tasks. Spinal neurons arise during early embryonic development with the establishment of spatially and molecularly discrete progenitor domains that give rise to distinct, but highly heterogeneous, postmitotic interneuron (IN) populations. Our previous studies have shown that Sim1-expressing V3 INs, originating from the p3 progenitor domain, are anatomically and physiologically divergent. However, the developmental logic guiding V3 subpopulation diversity remains elusive. In specific cases of other IN classes, neurogenesis timing can play a role in determining the ultimate fates and unique characteristics of distinctive subpopulations. To examine whether neurogenesis timing contributes to V3 diversity, we systematically investigated the temporal neurogenesis profiles of V3 INs in the mouse spinal cord. Our work uncovered that V3 INs were organized into either early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves. Early-born V3 INs displayed both ascending and descending commissural projections and clustered into subgroups across dorsoventral spinal laminae. In contrast, late-born V3 INs became fate-restricted to ventral laminae and displayed mostly descending and local commissural projections and uniform membrane properties. Furthermore, we found that the postmitotic transcription factor, Sim1, although expressed in all V3 INs, exclusively regulated the dorsal clustering and electrophysiological diversification of early-born, but not late-born, V3 INs, which indicates that neurogenesis timing may enable newborn V3 INs to interact with different postmitotic differentiation pathways. Thus, our work demonstrates neurogenesis timing as a developmental mechanism underlying the postmitotic differentiation of V3 INs into distinct subpopulation assemblies.SIGNIFICANCE STATEMENT Interneuron (IN) diversity empowers the spinal cord with the computation flexibility required to perform appropriate sensorimotor control. As such, uncovering the developmental logic guiding spinal IN diversity is fundamental to understanding the development of movement. In our current work, through a focus on the cardinal spinal V3 IN population, we investigated the role of neurogenesis timing on IN diversity. We uncovered that V3 INs are organized into early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves, where late-born V3 INs display increasingly restricted subpopulation fates. Next, to better understand the consequences of V3 neurogenesis timing, we investigated the time-dependent functions of the Sim1 transcription factor, which is expressed in postmitotic V3 INs. Interestingly, Sim1 exclusively regulated the diversification of early-born, but not late-born, V3 INs. Thus, our current work indicates neurogenesis timing can modulate the functions of early postmitotic transcription factors and, thus, subpopulation fate specifications.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Interneuronas/fisiología , Neurogénesis , Proteínas Represoras/fisiología , Médula Espinal/citología , Animales , Transporte Axonal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Movimiento Celular , Cruzamientos Genéticos , Ácido Glutámico/fisiología , Interneuronas/clasificación , Ratones , Ratones Noqueados , Neurotransmisores/fisiología , Técnicas de Placa-Clamp , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Factores de Tiempo
2.
Cell Rep ; 43(1): 113635, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38160393

RESUMEN

Spinal neural circuits that execute movement are composed of cardinal classes of neurons that emerged from distinct progenitor lineages. Each cardinal class contains multiple neuronal subtypes characterized by distinct molecular, anatomical, and physiological characteristics. Through a focus on the excitatory V3 interneuron class, here we demonstrate that interneuron subtype diversity is delineated through a combination of neurogenesis timing and final laminar settling position. We have revealed that early-born and late-born embryonic V3 temporal classes further diversify into subclasses with spatially and molecularly discrete identities. While neurogenesis timing accounts for V3 morphological diversification, laminar settling position accounts for electrophysiological profiles distinguishing V3 subtypes within the same temporal classes. Furthermore, V3 interneuron subtypes display independent behavioral recruitment patterns demonstrating a functional modularity underlying V3 interneuron diversity. These studies provide a framework for how early embryonic temporal and spatial mechanisms combine to delineate spinal interneuron classes into molecularly, anatomically, and functionally relevant subtypes in adults.


Asunto(s)
Interneuronas , Médula Espinal , Interneuronas/fisiología , Movimiento , Neurogénesis/fisiología
3.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38558998

RESUMEN

While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviours such as walking, less is known about the circuits that amplify motoneuron output to enable adaptable increases in muscle force across different locomotor intensities. Here, we demonstrate that an excitatory propriospinal neuron population (V3 neurons, Sim1 + ) forms a large part of the total excitatory interneuron input to motoneurons (∼20%) across all hindlimb muscles. Additionally, V3 neurons make extensive connections among themselves and with other excitatory premotor neurons (such as V2a neurons). These circuits allow local activation of V3 neurons at just one segment (via optogenetics) to rapidly depolarize and amplify locomotor-related motoneuron output at all lumbar segments in both the in vitro spinal cord and the awake adult mouse. Interestingly, despite similar innervation from V3 neurons to flexor and extensor motoneuron pools, functionally, V3 neurons exhibit a pronounced bias towards activating extensor muscles. Furthermore, the V3 neurons appear essential to extensor activity during locomotion because genetically silencing them leads to slower and weaker mice with a poor ability to increase force with locomotor intensity, without much change in the timing of locomotion. Overall, V3 neurons increase the excitability of motoneurons and premotor neurons, thereby serving as global command neurons that amplify the locomotion intensity.

4.
Sci Rep ; 10(1): 16429, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009442

RESUMEN

Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.


Asunto(s)
Mamíferos/metabolismo , Receptores Dopaminérgicos/metabolismo , Médula Espinal/metabolismo , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo
5.
Front Cell Neurosci ; 13: 516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824266

RESUMEN

Commissural interneurons (CINs) mediate interactions between rhythm-generating locomotor circuits located on each side of the spinal cord and are necessary for left-right limb coordination during locomotion. While glutamatergic V3 CINs have been implicated in left-right coordination, their functional connectivity remains elusive. Here, we addressed this issue by combining experimental and modeling approaches. We employed Sim1Cre/+; Ai32 mice, in which light-activated Channelrhodopsin-2 was selectively expressed in V3 interneurons. Fictive locomotor activity was evoked by NMDA and 5-HT in the isolated neonatal lumbar spinal cord. Flexor and extensor activities were recorded from left and right L2 and L5 ventral roots, respectively. Bilateral photoactivation of V3 interneurons increased the duration of extensor bursts resulting in a slowed down on-going rhythm. At high light intensities, extensor activity could become sustained. When light stimulation was shifted toward one side of the cord, the duration of extensor bursts still increased on both sides, but these changes were more pronounced on the contralateral side than on the ipsilateral side. Additional bursts appeared on the ipsilateral side not seen on the contralateral side. Further increase of the stimulation could suppress the contralateral oscillations by switching to a sustained extensor activity, while the ipsilateral rhythmic activity remained. To delineate the function of V3 interneurons and their connectivity, we developed a computational model of the spinal circuits consisting of two (left and right) rhythm generators (RGs) interacting via V0V, V0D, and V3 CINs. Both types of V0 CINs provided mutual inhibition between the left and right flexor RG centers and promoted left-right alternation. V3 CINs mediated mutual excitation between the left and right extensor RG centers. These interactions allowed the model to reproduce our current experimental data, while being consistent with previous data concerning the role of V0V and V0D CINs in securing left-right alternation and the changes in left-right coordination following their selective removal. We suggest that V3 CINs provide mutual excitation between the spinal neurons involved in the control of left and right extensor activity, which may promote left-right synchronization during locomotion.

6.
Neuropharmacology ; 141: 21-31, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30121200

RESUMEN

The cannabinoid receptor CB2 plays a significant role in the regulation of immune function whereas neuronal expression remains a subject of contention. Multiple studies have described CB2 in retina and a recent study showed that CB2 deletion altered retinal visual processing. We revisited CB2 expression using immunohistochemistry and a recently developed CB2-eGFP reporter mouse. We examined the consequence of acute vs. prolonged CB2 deactivation on the electroretinogram (ERG) responses. We also examined lipidomics in CB2 knockout mice and potential changes in microglia using Scholl analysis. Consistent with a published report, in CB2 receptor knockout mice see an increased ERG scotopic a-wave, as well as stronger responses in dark adapted cone-driven ON bipolar cells and, to a lesser extent cone-driven ON bipolar cells early in light adaptation. Significantly, however, acute block with CB2 antagonist, AM630, did not mimic the results observed in the CB2 knockout mice whereas chronic (7 days) block did. Immunohistochemical studies show no CB2 in retina under non-pathological conditions, even with published antibodies. Retinal CB2-eGFP reporter signal is minimal under baseline conditions but upregulated by intraocular injection of either LPS or carrageenan. CB2 knockout mice see modest declines in a broad spectrum of cannabinoid-related lipids. The numbers and morphology of microglia were unaltered. In summary minimal CB2 expression is seen in healthy retina. CB2 appears to be upregulated under pathological conditions. Previously reported functional consequences of CB2 deletion are an adaptive response to prolonged blockade of these receptors. CB2 therefore impacts retinal signaling but perhaps in an indirect, potentially extra-ocular fashion.


Asunto(s)
Receptor Cannabinoide CB2/biosíntesis , Receptor Cannabinoide CB2/fisiología , Retina/fisiología , Adaptación Ocular/fisiología , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Carragenina , Electrorretinografía , Femenino , Inmunohistoquímica , Indoles/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Metabolismo de los Lípidos/genética , Lipopolisacáridos , Masculino , Ratones , Ratones Noqueados , Receptor Cannabinoide CB2/genética , Retina/metabolismo , Células Bipolares de la Retina/fisiología , Regulación hacia Arriba/efectos de los fármacos
7.
Neuropharmacology ; 113(Pt B): 627-638, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27569993

RESUMEN

Proliferative vitreoretinopathy (PVR) can develop after ocular trauma or inflammation and is a common complication of surgery to correct retinal detachment. Currently, there are no pharmacological treatments for PVR. Cannabinoids acting at cannabinoid 2 receptor (CB2R) can decrease inflammation and fibrosis. The objective of this study was to examine the anti-inflammatory actions of CB2R as a candidate novel therapeutic target in experimental PVR. PVR was induced by intravitreal injection of dispase in wild-type (WT) and CB2R genetic knockout (CB2R-/-) mice. Ocular pathology was studied at 24 h or one week after dispase injection. CB2R modulation was examined in WT mice, using the CB2R agonist, HU308, and the CB2R antagonist, AM630. Histopathological scoring and quantification of microglia was used to evaluate tissue pathology. Quantitative PCR and multiplex assays were used to assess changes in proinflammatory cytokines. Intravital microscopy (IVM) was used to visualize and quantify leukocyte-endothelial adhesion to the iridial microcirculation. Activation of CB2R with HU308 in WT mice with PVR decreased mean histopathological scores, the number of microglia, and leukocyte adhesion compared to vehicle-treated animals. Conversely, an increase in histopathological scores and activated microglia was observed in PVR animals after treatment with AM630. CB2R-/- mice with PVR exhibited exacerbated ocular histopathology, increased microglia numbers, and elevated protein levels of cytokines as compared to WT mice. In conclusion, our results indicate that intervention at early stage PVR with CB2R agonists reduces ocular inflammation and disease severity. CB2R may represent a therapeutic target to prevent PVR progression and vision loss. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB2/metabolismo , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Vitreorretinopatía Proliferativa/inmunología , Animales , Cannabinoides/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endopeptidasas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/patología , Indoles/farmacología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/patología , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Retina/efectos de los fármacos , Retina/inmunología , Retina/patología , Vitreorretinopatía Proliferativa/patología
8.
PLoS One ; 11(8): e0158320, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27489958

RESUMEN

Mutations in genes that code for components of the Norrin-FZD4 ligand-receptor complex cause the inherited childhood blinding disorder familial exudative vitreoretinopathy (FEVR). Statistical evidence from studies of patients at risk for the acquired disease retinopathy of prematurity (ROP) suggest that rare polymorphisms in these same genes increase the risk of developing severe ROP, implying that decreased Norrin-FZD4 activity predisposes patients to more severe ROP. To test this hypothesis, we measured the development and recovery of retinopathy in wild type and Fzd4 heterozygous mice in the absence or presence of ocular ischemic retinopathy (OIR) treatment. Avascular and total retinal vascular areas and patterning were determined, and vessel number and caliber were quantified. In room air, there was a small delay in retinal vascularization in Fzd4 heterozygous mice that resolved as mice reached maturity suggestive of a slight defect in retinal vascular development. Subsequent to OIR treatment there was no difference between wild type and Fzd4 heterozygous mice in the vaso-obliterated area following exposure to high oxygen. Importantly, after return of Fzd4 heterozygous mice to room air subsequent to OIR treatment, there was a substantial delay in retinal revascularization of the avascular area surrounding the optic nerve, as well as delayed vascularization toward the periphery of the retina. Our study demonstrates that a small decrease in Norrin-Fzd4 dependent retinal vascular development lengthens the period during which complications from OIR could occur.


Asunto(s)
Receptores Frizzled/genética , Oxígeno/toxicidad , Retinopatía de la Prematuridad/etiología , Animales , Modelos Animales de Enfermedad , Femenino , Receptores Frizzled/metabolismo , Genotipo , Haploinsuficiencia , Masculino , Ratones , Microscopía Fluorescente , Nervio Óptico/irrigación sanguínea , Retina/metabolismo , Retina/patología , Neovascularización Retiniana , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Retinopatía de la Prematuridad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA