Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 550(7676): 411-414, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019979

RESUMEN

The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signalling. The transient receptor potential mucolipin (TRPML) channel family belongs to the TRP superfamily and is composed of three members: TRPML1-TRPML3. TRPMLs are the major Ca2+-permeable channels on late endosomes and lysosomes (LEL). They regulate the release of Ca2+ from organelles, which is important for various physiological processes, including organelle trafficking and fusion. Loss-of-function mutations in the MCOLN1 gene, which encodes TRPML1, cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV, and a gain-of-function mutation (Ala419Pro) in TRPML3 gives rise to the varitint-waddler (Va) mouse phenotype. Notably, TRPML channels are activated by the low-abundance and LEL-enriched signalling lipid phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), whereas other phosphoinositides such as PtdIns(4,5)P2, which is enriched in plasma membranes, inhibit TRPMLs. Conserved basic residues at the N terminus of the channel are important for activation by PtdIns(3,5)P2 and inhibition by PtdIns(4,5)P2. However, owing to a lack of structural information, the mechanism by which TRPML channels recognize PtdIns(3,5)P2 and increase their Ca2+ conductance remains unclear. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3 channel from the common marmoset (Callithrix jacchus) at an overall resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain that we term the mucolipin domain. Combined with functional studies, these data suggest that the mucolipin domain is responsible for PtdIns(3,5)P2 binding and subsequent channel activation, and that it acts as a 'gating pulley' for lipid-dependent TRPML gating.


Asunto(s)
Microscopía por Crioelectrón , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/ultraestructura , Animales , Sitios de Unión , Callithrix , Transporte Iónico , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Dominios Proteicos , Canales de Potencial de Receptor Transitorio/metabolismo
2.
J Biol Chem ; 292(24): 10087-10096, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28446610

RESUMEN

The defining structural feature of inward-rectifier potassium (Kir) channels is the unique Kir cytoplasmic domain. Recently we showed that salt bridges located at the cytoplasmic domain subunit interfaces (CD-Is) of eukaryotic Kir channels control channel gating via stability of a novel inactivated closed state. The cytoplasmic domains of prokaryotic and eukaryotic Kir channels show similar conformational rearrangements to the common gating ligand, phosphatidylinositol bisphosphate (PIP2), although these exhibit opposite coupling to opening and closing transitions. In Kir2.1, mutation of one of these CD-I salt bridge residues (R204A) reduces apparent PIP2 sensitivity of channel activity, and here we show that Ala or Cys substitutions of the functionally equivalent residue (Arg-165) in the prokaryotic Kir channel KirBac1.1 also significantly decrease sensitivity of the channel to PIP2 (by 5-30-fold). To further understand the structural basis of CD-I control of Kir channel gating, we examined the effect of the R165A mutation on PIP2-induced changes in channel function and conformation. Single-channel analyses indicated that the R165A mutation disrupts the characteristic long interburst closed state of reconstituted KirBac1.1 in giant liposomes, resulting in a higher open probability due to more frequent opening bursts. Intramolecular FRET measurements indicate that, relative to wild-type channels, the R165A mutation results in splaying of the cytoplasmic domains away from the central axis and that PIP2 essentially induces opposite motions of the major ß-sheet in this channel mutant. We conclude that the removal of stabilizing CD-I salt bridges results in a collapsed state of the Kir domain.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Burkholderia pseudomallei/metabolismo , Dimerización , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Liposomas , Mutación , Fosfatidilinositol 4,5-Difosfato/química , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Conformación Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína
3.
J Biol Chem ; 290(44): 26846-55, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26370091

RESUMEN

Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses.


Asunto(s)
Potenciales de la Membrana/fisiología , Nootrópicos/química , Pirrolidinonas/química , Receptores de N-Metil-D-Aspartato/química , Animales , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nootrópicos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pirrolidinonas/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Neurophysiol ; 108(11): 3105-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993263

RESUMEN

The activation mechanisms of recombinant N-methyl-d-aspartate receptors (NRs) have been established in sufficient detail to account for their single channel and macroscopic responses; however, the reaction mechanism of native NRs remains uncertain due to indetermination of the isoforms expressed and possible neuron-specific factors. To delineate the activation mechanism of native NRs, we examined the kinetic properties of currents generated by individual channels located at the soma of cultured rat neurons. Cells were dissociated from the embryonic cerebral cortex or hippocampus, and on-cell single channel recordings were done between 4 and 50 days in vitro (DIV). We observed two types of kinetics that correlated with the age of the culture. When we segregated recordings by culture age, we found that receptors recorded from early (4-33 DIV) and late (25-50 DIV) cultures had smaller unitary conductances but had kinetic profiles that matched closely those of recombinant 2B- or 2A-containing receptors, respectively. In addition, we examined the effects of cotransfection with postsynaptic density protein 95 or neuropilin tolloid-like protein 1 on recombinant receptors expressed in human embryonic kidney-293 cells. Our results add support to the view that neuronal cultures recapitulate the developmental patterns of receptor expression observed in the intact animal and demonstrate that the activation mechanism of somatic neuronal NRs is similar to that described for recombinant receptors of defined subunit composition.


Asunto(s)
Activación del Canal Iónico , Neuronas/fisiología , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Corteza Cerebral/citología , Homólogo 4 de la Proteína Discs Large , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Relacionadas con Receptor de LDL , Lipoproteínas LDL/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Subunidades de Proteína/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
5.
Elife ; 82019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31070581

RESUMEN

Temperature-sensitive transient receptor potential vanilloid (thermoTRPV) channels are activated by ligands and heat, and are involved in various physiological processes. ThermoTRPV channels possess a large cytoplasmic ring consisting of N-terminal ankyrin repeat domains (ARD) and C-terminal domains (CTD). The cytoplasmic inter-protomer interface is unique and consists of a CTD coiled around a ß-sheet which makes contacts with the neighboring ARD. Despite much existing evidence that the cytoplasmic ring is important for thermoTRPV function, the mechanism by which this unique structure is involved in thermoTRPV gating has not been clear. Here, we present cryo-EM and electrophysiological studies which demonstrate that TRPV3 gating involves large rearrangements at the cytoplasmic inter-protomer interface and that this motion triggers coupling between cytoplasmic and transmembrane domains, priming the channel for opening. Furthermore, our studies unveil the role of this interface in the distinct biophysical and physiological properties of individual thermoTRPV subtypes.


Asunto(s)
Citoplasma/metabolismo , Activación del Canal Iónico , Canales Catiónicos TRPV/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Canales Catiónicos TRPV/química , Temperatura
6.
Nat Commun ; 10(1): 3740, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431622

RESUMEN

The transient receptor potential melastatin 2 (TRPM2) channel plays a key role in redox sensation in many cell types. Channel activation requires binding of both ADP-ribose (ADPR) and Ca2+. The recently published TRPM2 structures from Danio rerio in the ligand-free and the ADPR/Ca2+-bound conditions represent the channel in closed and open states, which uncovered substantial tertiary and quaternary conformational rearrangements. However, it is unclear how these rearrangements are achieved within the tetrameric channel during channel gating. Here we report the cryo-electron microscopy structures of Danio rerio TRPM2 in the absence of ligands, in complex with Ca2+ alone, and with both ADPR and Ca2+, resolved to ~4.3 Å, ~3.8 Å, and ~4.2 Å, respectively. In contrast to the published results, our studies capture ligand-bound TRPM2 structures in two-fold symmetric intermediate states, offering a glimpse of the structural transitions that bridge the closed and open conformations.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Calcio/metabolismo , Estructura Cuaternaria de Proteína , Canales Catiónicos TRPM/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Línea Celular , Microscopía por Crioelectrón , Células HEK293 , Humanos , Activación del Canal Iónico , Técnicas de Placa-Clamp , Células Sf9 , Spodoptera , Canales Catiónicos TRPM/química , Pez Cebra , Proteínas de Pez Cebra/química
7.
Science ; 359(6372): 237-241, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29217583

RESUMEN

Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo-electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation.


Asunto(s)
Proteínas Aviares/química , Mentol/metabolismo , Passeriformes/metabolismo , Canales Catiónicos TRPM/química , Animales , Proteínas Aviares/metabolismo , Proteínas Aviares/ultraestructura , Sitios de Unión , Frío , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/ultraestructura
8.
Nat Commun ; 9(1): 4773, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429472

RESUMEN

Transient receptor potential vanilloid channel 3 (TRPV3), a member of the thermosensitive TRP (thermoTRPV) channels, is activated by warm temperatures and serves as a key regulator of normal skin physiology through the release of pro-inflammatory messengers. Mutations in trpv3 have been identified as the cause of the congenital skin disorder, Olmsted syndrome. Unlike other members of the thermoTRPV channel family, TRPV3 sensitizes upon repeated stimulation, yet a lack of structural information about the channel precludes a molecular-level understanding of TRPV3 sensitization and gating. Here, we present the cryo-electron microscopy structures of apo and sensitized human TRPV3, as well as several structures of TRPV3 in the presence of the common thermoTRPV agonist 2-aminoethoxydiphenyl borate (2-APB). Our results show α-to-π-helix transitions in the S6 during sensitization, and suggest a critical role for the S4-S5 linker π-helix during ligand-dependent gating.


Asunto(s)
Canales Catiónicos TRPV/ultraestructura , Compuestos de Boro/metabolismo , Microscopía por Crioelectrón , Calor , Humanos , Conformación Proteica en Hélice alfa , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo
10.
J Gen Physiol ; 149(5): 561-576, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28389584

RESUMEN

Inward rectifier potassium (Kir) channels are expressed in almost all mammalian tissues and play critical roles in the control of excitability. Pancreatic ATP-sensitive K (KATP) channels are key regulators of insulin secretion and comprise Kir6.2 subunits coupled to sulfonylurea receptors. Because these channels are reversibly inhibited by cytoplasmic ATP, they link cellular metabolism with membrane excitability. Loss-of-function mutations in the pore-forming Kir6.2 subunit cause congenital hyperinsulinism as a result of diminished channel activity. Here, we show that several disease mutations, which disrupt intersubunit salt bridges at the interface of the cytoplasmic domains (CD-I) of adjacent subunits, induce loss of channel activity via a novel channel behavior: after ATP removal, channels open but then rapidly inactivate. Re-exposure to inhibitory ATP causes recovery from this inactivation. Inactivation can be abolished by application of phosphatidylinositol-4,5-bisphosphate (PIP2) to the cytoplasmic face of the membrane, an effect that can be explained by a simple kinetic model in which PIP2 binding competes with the inactivation process. Kir2.1 channels contain homologous salt bridges, and we find that mutations that disrupt CD-I interactions in Kir2.1 also reduce channel activity and PIP2 sensitivity. Kir2.1 channels also contain an additional CD-I salt bridge that is not present in Kir6.2 channels. Introduction of this salt bridge into Kir6.2 partially rescues inactivating mutants from the phenotype. These results indicate that the stability of the intersubunit CD-I is a major determinant of the inactivation process in Kir6.2 and may control gating in other Kir channels.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cricetinae , Citoplasma/metabolismo , Humanos , Mutación con Pérdida de Función , Ratones , Mutación Missense , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Dominios Proteicos
11.
Nat Struct Mol Biol ; 23(1): 31-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26641713

RESUMEN

Crystallography has provided invaluable insights regarding ion-channel selectivity and gating, but to advance understanding to a new level, dynamic views of channel structures within membranes are essential. We labeled tetrameric KirBac1.1 potassium channels with single donor and acceptor fluorophores at different sites and then examined structural dynamics within lipid membranes by single-molecule fluorescence resonance energy transfer (FRET). We found that the extracellular region is structurally rigid in both closed and open states, whereas the N-terminal slide helix undergoes marked conformational fluctuations. The cytoplasmic C-terminal domain fluctuates between two major structural states, both of which become less dynamic and move away from the pore axis and away from the membrane in closed channels. Our results reveal mobile and rigid conformations of functionally relevant KirBac1.1 channel motifs, implying similar dynamics for similar motifs in eukaryotic Kir channels and in cation channels in general.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Modelos Moleculares , Coloración y Etiquetado/métodos
12.
Nat Commun ; 2: 498, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21988914

RESUMEN

Two classes of glutamate-activated channels mediate excitation at central synapses: N-methyl-D-aspartic acid (NMDA) receptors and non-NMDA receptors. Despite substantial structural homology, each class generates signals with characteristic kinetics and mediates distinct synaptic functions. In non-NMDA receptors, the strength of intersubunit contacts within ligand-binding domains is inversely correlated with functional desensitization. Here we test how the strength of these contacts affects NMDA receptor activation by combining mutagenesis and single-channel current analyses. We show that receptors with covalently linked dimers had significantly lower activity due to high barriers to opening and unstable open states but had intact desensitization. On the basis of these observations, we suggest that in NMDA receptors rearrangements at the heterodimer interface represent an early and integral step of the opening sequence but are not required for desensitization. These results demonstrate distinct functional roles in the activation of NMDA and non-NMDA glutamate-gated channels for largely conserved intersubunit contacts.


Asunto(s)
Receptores de N-Metil-D-Aspartato/agonistas , Dimerización , Ligandos , Técnicas de Placa-Clamp , Unión Proteica , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA