Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(5): 1113-1131, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38038155

RESUMEN

Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in Sm-RNase, which is responsible for the loss of SI in mandarin and its hybrids. However, little is known about other mechanisms responsible for conversion of SI to self-compatibility (SC) and we identify a completely different mechanism widely utilized by citrus. Here, we found a 786-bp miniature inverted-repeat transposable element (MITE) insertion in the promoter region of the FhiS2-RNase in Fortunella hindsii Swingle (a model plant for citrus gene function), which does not contain the Sm-RNase allele but are still SC. We demonstrate that this MITE plays a pivotal role in the loss of SI in citrus, providing evidence that this MITE insertion prevents expression of the S-RNase; moreover, transgenic experiments show that deletion of this 786-bp MITE insertion recovers the expression of FhiS2-RNase and restores SI. This study identifies the first evidence for a role for MITEs at the S-locus affecting the SI phenotype. A family-wide survey of the S-locus revealed that MITE insertions occur frequently adjacent to S-RNase alleles in different citrus genera, but only certain MITEs appear to be responsible for the loss of SI. Our study provides evidence that insertion of MITEs into a promoter region can alter a breeding strategy and suggests that this phenomenon may be broadly responsible for SC in species with the S-RNase system.


Asunto(s)
Citrus , Elementos Transponibles de ADN , Elementos Transponibles de ADN/genética , Citrus/genética , Fitomejoramiento , Mutación , Ribonucleasas/metabolismo
2.
New Phytol ; 242(5): 1865-1875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38538552

RESUMEN

Programmed cell death (PCD) is fundamentally important for plant development, abiotic stress responses and immunity, but our understanding of its regulation remains fragmented. Building a stronger research community is required to accelerate progress in this area through knowledge exchange and constructive debate. In this Viewpoint, we aim to initiate a collective effort to integrate data across a diverse set of experimental models to facilitate characterisation of the fundamental mechanisms underlying plant PCD and ultimately aid the development of a new plant cell death classification system in the future. We also put forward our vision for the next decade of plant PCD research stemming from discussions held during the 31st New Phytologist workshop, 'The Life and Death Decisions of Plant Cells' that took place at University College Dublin in Ireland (14-15 June 2023). We convey the key areas of significant progress and possible future research directions identified, including resolving the spatiotemporal control of cell death, isolation of its molecular and genetic regulators, and harnessing technical advances for studying PCD events in plants. Further, we review the breadth of potential impacts of plant PCD research and highlight the promising new applications of findings from this dynamically evolving field.


Asunto(s)
Apoptosis , Investigación , Plantas , Células Vegetales/fisiología
3.
J Cell Sci ; 133(6)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32051284

RESUMEN

Self-incompatibility (SI) in the poppy Papaver rhoeas triggers dramatic alterations in actin within pollen tubes. However, how these actin alterations are mechanistically achieved remains largely unexplored. Here, we used treatment with the Ca2+ ionophore A23187 to mimic the SI-induced elevation in cytosolic Ca2+ and trigger formation of the distinctive F-actin foci. Live-cell imaging revealed that this remodeling involves F-actin fragmentation and depolymerization, accompanied by the rapid formation of punctate actin foci and subsequent increase in their size. We established that actin foci are generated and enlarged from crosslinking of fragmented actin filament structures. Moreover, we show that villins associate with actin structures and are involved in this actin reorganization process. Notably, we demonstrate that Arabidopsis VILLIN5 promotes actin depolymerization and formation of actin foci by fragmenting actin filaments, and controlling the enlargement of actin foci via bundling of actin filaments. Our study thus uncovers important novel insights about the molecular players and mechanisms involved in forming the distinctive actin foci in pollen tubes.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Tubo Polínico , Citoesqueleto de Actina , Actinas/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Tubo Polínico/genética
4.
N Engl J Med ; 381(22): 2091-2102, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31774954

RESUMEN

BACKGROUND: Extremely dense breast tissue is a risk factor for breast cancer and limits the detection of cancer with mammography. Data are needed on the use of supplemental magnetic resonance imaging (MRI) to improve early detection and reduce interval breast cancers in such patients. METHODS: In this multicenter, randomized, controlled trial in the Netherlands, we assigned 40,373 women between the ages of 50 and 75 years with extremely dense breast tissue and normal results on screening mammography to a group that was invited to undergo supplemental MRI or to a group that received mammography screening only. The groups were assigned in a 1:4 ratio, with 8061 in the MRI-invitation group and 32,312 in the mammography-only group. The primary outcome was the between-group difference in the incidence of interval cancers during a 2-year screening period. RESULTS: The interval-cancer rate was 2.5 per 1000 screenings in the MRI-invitation group and 5.0 per 1000 screenings in the mammography-only group, for a difference of 2.5 per 1000 screenings (95% confidence interval [CI], 1.0 to 3.7; P<0.001). Of the women who were invited to undergo MRI, 59% accepted the invitation. Of the 20 interval cancers that were diagnosed in the MRI-invitation group, 4 were diagnosed in the women who actually underwent MRI (0.8 per 1000 screenings) and 16 in those who did not accept the invitation (4.9 per 1000 screenings). The MRI cancer-detection rate among the women who actually underwent MRI screening was 16.5 per 1000 screenings (95% CI, 13.3 to 20.5). The positive predictive value was 17.4% (95% CI, 14.2 to 21.2) for recall for additional testing and 26.3% (95% CI, 21.7 to 31.6) for biopsy. The false positive rate was 79.8 per 1000 screenings. Among the women who underwent MRI, 0.1% had either an adverse event or a serious adverse event during or immediately after the screening. CONCLUSIONS: The use of supplemental MRI screening in women with extremely dense breast tissue and normal results on mammography resulted in the diagnosis of significantly fewer interval cancers than mammography alone during a 2-year screening period. (Funded by the University Medical Center Utrecht and others; DENSE ClinicalTrials.gov number, NCT01315015.).


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Detección Precoz del Cáncer/métodos , Imagen por Resonancia Magnética , Mamografía , Anciano , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/epidemiología , Reacciones Falso Positivas , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Sensibilidad y Especificidad
5.
New Phytol ; 236(5): 1691-1707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35775998

RESUMEN

Self-incompatibility (SI) involves specific interactions during pollination to reject incompatible ('self') pollen, preventing inbreeding in angiosperms. A key event observed in pollen undergoing the Papaver rhoeas SI response is the formation of punctate F-actin foci. Pollen tube growth is heavily energy-dependent, yet ATP levels in pollen tubes have not been directly measured during SI. Here we used transgenic Arabidopsis lines expressing the Papaver pollen S-determinant to investigate a possible link between ATP levels, cytosolic pH ([pH]cyt ) and alterations to the actin cytoskeleton. We identify for the first time that SI triggers a rapid and significant ATP depletion in pollen tubes. Artificial depletion of ATP triggered cytosolic acidification and formation of actin aggregates. We also identify in vivo, evidence for a threshold [pH]cyt of 5.8 for actin foci formation. Imaging revealed that SI stimulates acidic cytosolic patches adjacent to the plasma membrane. In conclusion, this study provides evidence that ATP depletion plays a pivotal role in SI upstream of programmed cell death and reveals a link between the cellular energy status, cytosolic acidification and alterations to the actin cytoskeleton in regulating Papaver SI in pollen tubes.


Asunto(s)
Arabidopsis , Papaver , Tubo Polínico , Actinas/metabolismo , Proteínas de Plantas/metabolismo , Papaver/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Adenosina Trifosfato/metabolismo
6.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296599

RESUMEN

Acacia spp. are invasive in Southern Europe, and their high propagation rates produce excessive biomass, exacerbating wildfire risk. However, lignocellulosic biomass from Acacia spp. may be utilised for diverse biorefinery applications. In this study, attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR), high-performance anion-exchange chromatography pulsed amperometric detection (HPAEC-PAD) and lignin content determinations were used for a comparative compositional characterisation of A. dealbata, A. longifolia and A. melanoxylon. Additionally, biomass was treated with three white-rot fungi species (Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor), which preferentially degrade lignin. Our results showed that the pre-treatments do not significantly alter neutral sugar composition while reducing lignin content. Sugar release from enzymatic saccharification was enhanced, in some cases possibly due to a synergy between white-rot fungi and mild alkali pretreatments. For example, in A. dealbata stems treated with alkali and P. ostreatus, saccharification yield was 702.3 nmol mg-1, which is higher than the samples treated only with alkali (608.1 nmol mg-1), and 2.9-fold higher than the non-pretreated controls (243.9 nmol mg-1). By characterising biomass and pretreatments, generated data creates value for unused biomass resources, contributing to the implementation of sustainable biorefining systems. In due course, the generated value will lead to economic incentives for landowners to cut back invasive Acacia spp. more frequently, thus reducing excess biomass, which exacerbates wildfire risk.


Asunto(s)
Acacia , Lignina , Lignina/química , Acacia/química , Trametes/metabolismo , Biomasa , Álcalis , Azúcares
7.
Radiology ; 299(2): 278-286, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33724062

RESUMEN

Background In the first (prevalent) supplemental MRI screening round of the Dense Tissue and Early Breast Neoplasm Screening (DENSE) trial, a considerable number of breast cancers were found at the cost of an increased false-positive rate (FPR). In incident screening rounds, a lower cancer detection rate (CDR) is expected due to a smaller pool of prevalent cancers, and a reduced FPR, due to the availability of prior MRI examinations. Purpose To investigate screening performance indicators of the second round (incidence round) of the DENSE trial. Materials and Methods The DENSE trial (ClinicalTrials.gov: NCT01315015) is embedded within the Dutch population-based biennial mammography screening program for women aged 50-75 years. MRI examinations were performed between December 2011 and January 2016. Women were eligible for the second round when they again had a negative screening mammogram 2 years after their first MRI. The recall rate, biopsy rate, CDR, FPR, positive predictive values, and distributions of tumor characteristics were calculated and compared with results of the first round using 95% CIs and χ2 tests. Results A total of 3436 women (median age, 56 years; interquartile range, 48-64 years) underwent a second MRI screening. The CDR was 5.8 per 1000 screening examinations (95% CI: 3.8, 9.0) compared with 16.5 per 1000 screening examinations (95% CI: 13.3, 20.5) in the first round. The FPR was 26.3 per 1000 screening examinations (95% CI: 21.5, 32.3) in the second round versus 79.8 per 1000 screening examinations (95% CI: 72.4, 87.9) in the first round. The positive predictive value for recall was 18% (20 of 110 participants recalled; 95% CI: 12.1, 26.4), and the positive predictive value for biopsy was 24% (20 of 84 participants who underwent biopsy; 95% CI: 16.0, 33.9), both comparable to that of the first round. All tumors in the second round were stage 0-I and node negative. Conclusion The incremental cancer detection rate in the second round was 5.8 per 1000 screening examinations-compared with 16.5 per 1000 screening examinations in the first round. This was accompanied by a strong reduction in the number of false-positive results. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Moy and Gao in this issue.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Imagen por Resonancia Magnética , Tamizaje Masivo/métodos , Biopsia , Neoplasias de la Mama/epidemiología , Detección Precoz del Cáncer , Reacciones Falso Positivas , Femenino , Humanos , Incidencia , Persona de Mediana Edad , Países Bajos/epidemiología
8.
Plant Physiol ; 183(3): 1391-1404, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32321844

RESUMEN

Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.


Asunto(s)
Papaver/fisiología , Proteínas de Plantas/metabolismo , Polen/fisiología , Autoincompatibilidad en las Plantas con Flores/fisiología , Actinas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Peróxido de Hidrógeno/toxicidad , Pirofosfatasa Inorgánica/metabolismo , Nitrosación , Oxidación-Reducción , Papaver/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/química , Polen/efectos de los fármacos , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Autoincompatibilidad en las Plantas con Flores/efectos de los fármacos , Solubilidad
9.
Plant Physiol ; 183(4): 1765-1779, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32561539

RESUMEN

Self-incompatibility (SI) is used by many angiosperms to reject self-pollen and avoid inbreeding. In field poppy (Papaver rhoeas), SI recognition and rejection of self-pollen is facilitated by a female S-determinant, PrsS, and a male S-determinant, PrpS PrsS belongs to the cysteine-rich peptide family, whose members activate diverse signaling networks involved in plant growth, defense, and reproduction. PrsS and PrpS are tightly regulated and expressed solely in pistil and pollen cells, respectively. Interaction of cognate PrsS and PrpS triggers pollen tube growth inhibition and programmed cell death (PCD) of self-pollen. We previously demonstrated functional intergeneric transfer of PrpS and PrsS to Arabidopsis (Arabidopsis thaliana) pollen and pistil. Here, we show that PrpS and PrsS, when expressed ectopically, act as a bipartite module to trigger a self-recognition:self-destruct response in Arabidopsis independently of its reproductive context in vegetative cells. The addition of recombinant PrsS to seedling roots expressing the cognate PrpS resulted in hallmark features of the P rhoeas SI response, including S-specific growth inhibition and PCD of root cells. Moreover, inducible expression of PrsS in PrpS-expressing seedlings resulted in rapid death of the entire seedling. This demonstrates that, besides specifying SI, the bipartite PrpS-PrsS module can trigger growth arrest and cell death in vegetative cells. Heterologous, ectopic expression of a plant bipartite signaling module in plants has not been shown previously and, by extrapolation, our findings suggest that cysteine-rich peptides diversified for a variety of specialized functions, including the regulation of growth and PCD.


Asunto(s)
Arabidopsis/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular/genética , Muerte Celular/fisiología , Flores/genética , Flores/metabolismo , Polen/genética , Polen/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Ann Bot ; 128(5): 589-603, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34091667

RESUMEN

BACKGROUND AND AIMS: Wheat crops are exposed to a range of mechanical stimulations in their natural environment, yet we know very little about their response to such conditions. The aim of this study was to better understand the effect of mechanical stimulation on wheat growth and development, stem mechanical properties and grain measures. We focused on the following questions: (1) Does plant age affect the response to mechanical stimulation? (2) Is there a minimum threshold for the perception of mechanical stimuli? (3) Is the effect of manual brushing different to natural wind stimulation? METHODS: For age- and dose-response experiments, wheat plants were grown under controlled glasshouse conditions with brushing treatments applied using a purpose-built rig. The results of the controlled experiments are compared with those from an outside experiment where wheat plants were exposed to natural wind, with or without additional brushing. Detailed phenotypic measurements were conducted and treatment effects on grain characteristics were determined using micro-computed tomography imaging. KEY RESULTS: Two-week-old wheat plants were particularly sensitive to mechanical stimulation by controlled brushing treatments. Amongst others, plants exhibited a large reduction in height and grain yield, and an increase in tillers, above-ground biomass and stiffness of stem segments. Plants responded significantly to doses as small as one daily brushstroke. Outdoor experiments by and large confirmed results from controlled environment experiments. CONCLUSIONS: The morphological and developmental response to mechanical brushing treatment, in relation to vegetative above-ground biomass and grain yield, is dependent on plant age as well as the dose of the treatments. This study shows that mechanical stimulation of wheat impacts on a multitude of agriculturally relevant traits and provides a much needed advancement of our understanding of wheat thigmomorphogenesis and the potential applications of mechanical conditioning to control relevant traits.


Asunto(s)
Grano Comestible , Triticum , Biomasa , Fenotipo , Microtomografía por Rayos X
11.
Plant Cell Environ ; 43(5): 1314-1330, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31955437

RESUMEN

Mechanical stimulation, including exposure to wind, is a common environmental variable for plants. However, knowledge about the morphogenetic response of the grasses (Poaceae) to mechanical stimulation and impact on relevant agronomic traits is very limited. Two natural accessions of Brachypodium distachyon were exposed to wind and mechanical treatments. We surveyed a wide range of stem-related traits to determine the effect of the two treatments on plant growth, development, and stem biomass properties. Both treatments induced significant quantitative changes across multiple scales, from the whole plant down to cellular level. The two treatments resulted in shorter stems, reduced biomass, increased tissue rigidity, delayed flowering, and reduced seed yield in both accessions. Among changes in cell wall-related features, a substantial increase in lignin content and pectin methylesterase activity was most notable. Mechanical stimulation also reduced the enzymatic sugar release from the cell wall, thus increasing biomass recalcitrance. Notably, treatments had a distinct and opposite effect on vascular bundle area in the two accessions, suggesting genetic variation in modulating these responses to mechanical stimulation. Our findings highlight that exposure of grasses to mechanical stimulation is a relevant environmental factor affecting multiple traits important for their utilization in food, feed, and bioenergy applications.


Asunto(s)
Brachypodium/fisiología , Pared Celular/fisiología , Brachypodium/crecimiento & desarrollo , Ensayo de Inmunoadsorción Enzimática , Lignina/metabolismo , Fenómenos Mecánicos , Monosacáridos/metabolismo , Viento
12.
J Exp Bot ; 71(8): 2451-2463, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32100005

RESUMEN

Pollen tube growth is essential for plant reproduction. Their rapid extension using polarized tip growth provides an exciting system for studying this specialized type of growth. Self-incompatibility (SI) is a genetically controlled mechanism to prevent self-fertilization. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy). This utilizes two S-determinants: stigma-expressed PrsS and pollen-expressed PrpS. Interaction of cognate PrpS-PrsS triggers a signalling network, causing rapid growth arrest and programmed cell death (PCD) in incompatible pollen. We previously demonstrated that transgenic Arabidopsis thaliana pollen expressing PrpS-green fluorescent protein (GFP) can respond to Papaver PrsS with remarkably similar responses to those observed in incompatible Papaver pollen. Here we describe recent advances using these transgenic plants combined with genetically encoded fluorescent probes to monitor SI-induced cellular alterations, including cytosolic calcium, pH, the actin cytoskeleton, clathrin-mediated endocytosis (CME), and the vacuole. This approach has allowed us to study the SI response in depth, using multiparameter live-cell imaging approaches that were not possible in Papaver. This lays the foundations for new opportunities to elucidate key mechanisms involved in SI. Here we establish that CME is disrupted in self-incompatible pollen. Moreover, we reveal new detailed information about F-actin remodelling in pollen tubes after SI.


Asunto(s)
Arabidopsis , Papaver , Arabidopsis/genética , Papaver/genética , Proteínas de Plantas , Polen/genética , Polinización
13.
NMR Biomed ; 32(8): e4110, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31136039

RESUMEN

PURPOSE: Metabolic MRI is a noninvasive technique that can give new insights into understanding cancer metabolism and finding biomarkers to evaluate or monitor treatment plans. Using this technique, a previous study has shown an increase in pH during neoadjuvant chemotherapy (NAC) treatment, while recent observation in a different study showed a reduced amide proton transfer (APT) signal during NAC treatment (negative relation). These findings are counterintuitive, given the known intrinsic positive relation of APT signal to pH. METHODS: In this study we combined APT MRI and 31 P-MRSI measurements to unravel the relation between the APT signal and pH in breast cancer. Twenty-two breast cancer patients were scanned with a 7 T MRI before and after the first cycle of NAC treatment. pH was determined by the chemical shift of inorganic phosphate (Pi). RESULTS: While APT signals have a positive relation to pH and amide content, we observed a direct negative linear correlation between APT signals and pH in breast tumors in vivo. CONCLUSIONS: As differentiation of cancer stages was confirmed by observation of a linear correlation between cell proliferation marker PE/Pi (phosphoethanolamine over inorganic phosphate) and pH in the tumor, our data demonstrates that the concentration of mobile proteins likely supersedes the contribution of the exchange rate to the APT signal.


Asunto(s)
Amidas/química , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Imagen por Resonancia Magnética , Adulto , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , Terapia Neoadyuvante , Protones
14.
J Exp Bot ; 70(7): 2113-2123, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30481323

RESUMEN

Self-incompatibility (SI) is a genetically controlled mechanism that prevents self-fertilization and thus encourages outbreeding and genetic diversity. During pollination, most SI systems utilize cell-cell recognition to reject incompatible pollen. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy), which involves the interaction between the two S-determinants, a stigma-expressed secreted protein (PrsS) and a pollen-expressed plasma membrane-localized protein (PrpS). This interaction is the critical step in determining acceptance of compatible pollen or rejection of incompatible pollen. Cognate PrpS-PrsS interaction triggers a signalling network causing rapid growth arrest and eventually programmed cell death (PCD) in incompatible pollen. In this review, we provide an overview of recent advances in our understanding of the major components involved in the SI-induced PCD (SI-PCD). In particular, we focus on the importance of SI-induced intracellular acidification and consequences for protein function, and the regulation of soluble inorganic pyrophosphatase (Pr-p26.1) activity by post-translational modification. We also discuss attempts to identify protease(s) involved in the SI-PCD process. Finally, we outline future opportunities made possible by the functional transfer of the P. rhoeas SI system to Arabidopsis.


Asunto(s)
Apoptosis , Papaver/fisiología , Polen/fisiología , Autoincompatibilidad en las Plantas con Flores/fisiología , Arabidopsis/fisiología , Ambiente , Concentración de Iones de Hidrógeno , Plantas Modificadas Genéticamente/fisiología
15.
Ann Bot ; 124(4): 521-530, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30351424

RESUMEN

BACKGROUND: Miscanthus has potential as a biomass crop but the development of varieties that are consistently superior to the natural hybrid M. × giganteus has been challenging, presumably because of strong G × E interactions and poor knowledge of the complex genetic architectures of traits underlying biomass productivity and climatic adaptation. While linkage and association mapping studies are starting to generate long lists of candidate regions and even individual genes, it seems unlikely that this information can be translated into effective marker-assisted selection for the needs of breeding programmes. Genomic selection has emerged as a viable alternative, and prediction accuracies are moderate across a range of phenological and morphometric traits in Miscanthus, though relatively low for biomass yield per se. METHODS: We have previously proposed a combination of index selection and genomic prediction as a way of overcoming the limitations imposed by the inherent complexity of biomass yield. Here we extend this approach and illustrate its potential to achieve multiple breeding targets simultaneously, in the absence of a priori knowledge about their relative economic importance, while also monitoring correlated selection responses for non-target traits. We evaluate two hypothetical scenarios of increasing biomass yield by 20 % within a single round of selection. In the first scenario, this is achieved in combination with delaying flowering by 44 d (roughly 20 %), whereas, in the second, increased yield is targeted jointly with reduced lignin (-5 %) and increased cellulose (+5 %) content, relative to current average levels in the breeding population. KEY RESULTS: In both scenarios, the objectives were achieved efficiently (selection intensities corresponding to keeping the best 20 and 4 % of genotypes, respectively). However, the outcomes were strikingly different in terms of correlated responses, and the relative economic values (i.e. value per unit of change in each trait compared with that for biomass yield) of secondary traits included in selection indices varied considerably. CONCLUSIONS: Although these calculations rely on multiple assumptions, they highlight the need to evaluate breeding objectives and explicitly consider correlated responses in silico, prior to committing extensive resources. The proposed approach is broadly applicable for this purpose and can readily incorporate high-throughput phenotyping data as part of integrated breeding platforms.


Asunto(s)
Cruzamiento , Genómica , Genotipo , Fenotipo , Poaceae , Selección Genética
16.
Ann Bot ; 124(4): 553-566, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30137291

RESUMEN

BACKGROUND AND AIMS: The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties. METHODS: Automated imaging facilities at the National Plant Phenomics Centre (NPPC-Aberystwyth) were used for dynamic phenotyping to identify plant responses to separate and combinatorial stresses. Harvested leaf and stem samples of the three miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus and Miscanthus × giganteus) were separately subjected to saccharification assays, to measure sugar release, and cell-wall composition analyses. KEY RESULTS: Phenotyping showed that the M. sacchariflorus genotype Sac-5 and particularly the M. sinensis genotype Sin-11 coped better than the M. × giganteus genotype Gig-311 with drought stress when grown in nutrient-poor compost. Sugar release by enzymatic hydrolysis, used as a biomass quality measure, was significantly affected by the different environmental conditions in a stress-, genotype- and organ-dependent manner. A combination of abundant water and low nutrients resulted in the highest sugar release from leaves, while for stems this was generally associated with the combination of drought and nutrient-rich conditions. Cell-wall composition analyses suggest that changes in fine structure of cell-wall polysaccharides, including heteroxylans and pectins, possibly in association with lignin, contribute to the observed differences in cell-wall biomass sugar release. CONCLUSIONS: The results highlight the importance of the assessment of miscanthus biomass quality measures in addition to biomass yield determinations and the requirement for selecting suitable miscanthus genotypes for different environmental conditions.


Asunto(s)
Sequías , Poaceae , Biomasa , Lignina , Nutrientes
17.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974727

RESUMEN

Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.


Asunto(s)
Brachypodium/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Proteínas de Plantas/biosíntesis , Estrés Fisiológico , Brachypodium/genética , Pared Celular/genética , Deshidratación/genética , Deshidratación/metabolismo , Proteínas de Plantas/genética
18.
Eur Radiol ; 28(3): 920-928, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28786008

RESUMEN

OBJECTIVE: Radioembolisation is generally preceded by a scout dose of technetium-99m-macroaggregated albumin to estimate extrahepatic shunting of activity. Holmium-166 microspheres can be used as a scout dose (±250 MBq) and as a therapeutic dose. The general toxicity of a holmium-166 scout dose (166Ho-SD) and safety concerns of an accidental extrahepatic deposition of 166Ho-SD were investigated. METHODS: All patients who received a 166Ho-SD in our institute were reviewed for general toxicity and extrahepatic depositions. The absorbed dose in extrahepatic tissue was calculated on SPECT/CT and correlated to clinical toxicities. RESULTS: In total, 82 patients were included. No relevant clinical toxicity occurred. Six patients had an extrahepatic deposition of 166Ho-SD (median administered activity 270 MBq). The extrahepatic depositions (median activity 3.7 MBq) were located in the duodenum (3x), gastric fundus, falciform ligament and the lesser curvature of the stomach, and were deposited in a median volume of 15.3 ml, which resulted in an estimated median absorbed dose of 3.6 Gy (range 0.3-13.8 Gy). No adverse events related to the extrahepatic deposition of the 166Ho-SD occurred after a median follow-up of 4 months (range 1-12 months). CONCLUSION: These results support the safety of 250 MBq 166Ho-SD in a clinical setting. KEY POINTS: • A holmium-166 scout dose is safe in a clinical setting. • Holmium-166 scout dose is a safe alternative for 99m Tc-MAA for radioembolisation work-up. • Holmium-166 scout dose potentially has several benefits over 99m Tc-MAA for radioembolisation work-up.


Asunto(s)
Embolización Terapéutica/métodos , Holmio/farmacología , Neoplasias Hepáticas/radioterapia , Microesferas , Radioisótopos/farmacología , Tomografía Computarizada de Emisión de Fotón Único/métodos , Radioisótopos de Itrio/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Persona de Mediana Edad
19.
J Vasc Interv Radiol ; 29(2): 244-253.e2, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29249594

RESUMEN

PURPOSE: To assess applicability of metabolic tumor response assessment on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) after radioembolization (RE) in patients with colorectal liver metastases (CRLM) by comparison with one-dimensional size-based response assessment on MR imaging. MATERIALS AND METHODS: This prospective cohort study comprised 38 patients with CRLM undergoing RE. MR imaging and 18F-FDG PET/CT imaging were performed at baseline, 1 month (n = 38), and 3 months (n = 21). Longest tumor diameter (LTD) reduction on MR imaging at these time points was compared with reduction in total lesion glycolysis (TLG) on 18F-FDG PET/CT. Hepatic response was compared between RECIST and total liver TLG and correlated with overall survival (OS). RESULTS: TLG and LTD were positively correlated in 106 analyzed metastases (38 patients) at 1 month and 58 metastases (22 patients) at 3 months. Agreement was poor, with LTD underestimating TLG response. A significant association with prolonged OS was found in total liver TLG at 1 month (HR 0.64, P < .01) and 3 months (HR 0.43, P < .01). For LTD, a significant association with OS was found at 3 months (HR 0.10, P < .01). Important differences in liver response classification were found, with total liver TLG identifying more patients and situations where there appeared to be treatment benefit compared with RECIST. CONCLUSIONS: TLG response assessment on 18F-FDG PET/CT appears to be more sensitive and accurate, especially at early follow-up, than size-based response assessment on MR imaging in patients with CRLM treated by RE. Semiautomated liver response assessment with total liver TLG is objective, reproducible, rapid, and prognostic.


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundario , Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Itrio/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Medios de Contraste , Femenino , Fluorodesoxiglucosa F18 , Glucólisis , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Radiofármacos , Criterios de Evaluación de Respuesta en Tumores Sólidos , Sensibilidad y Especificidad , Resultado del Tratamiento
20.
BMC Gastroenterol ; 18(1): 84, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29902988

RESUMEN

BACKGROUND: Neuroendocrine tumours (NET) consist of a heterogeneous group of neoplasms with various organs of origin. At diagnosis 21% of the patients with a Grade 1 NET and 30% with a Grade 2 NET have distant metastases. Treatment with peptide receptor radionuclide therapy (PRRT) shows a high objective response rate and long median survival after treatment. However, complete remission is almost never achieved. The liver is the most commonly affected organ in metastatic disease and is the most incriminating factor for patient survival. Additional treatment of liver disease after PRRT may improve outcome in NET patients. Radioembolization is an established therapy for liver metastasis. To investigate this hypothesis, a phase 2 study was initiated to assess effectiveness and toxicity of holmium-166 radioembolization (166Ho-RE) after PRRT with lutetium-177 (177Lu)-DOTATATE. METHODS: The HEPAR PLUS trial ("Holmium Embolization Particles for Arterial Radiotherapy Plus 177 Lu-DOTATATE in Salvage NET patients") is a single centre, interventional, non-randomized, non-comparative, open label study. In this phase 2 study 30-48 patients with > 3 measurable liver metastases according to RECIST 1.1 will receive additional 166Ho-RE within 20 weeks after the 4th and last cycle of PRRT with 7.4 GBq 177Lu-DOTATATE. Primary objectives are to assess tumour response, complete and partial response according to RECIST 1.1, and toxicity, based on CTCAE v4.03, 3 months after 166Ho-RE. Secondary endpoints include biochemical response, quality of life, biodistribution and dosimetry. DISCUSSION: This is the first prospective study to combine PRRT with 177Lu-DOTATATE and additional 166Ho-RE in metastatic NET. A radiation boost on intrahepatic disease using 166Ho-RE may lead to an improved response rate without significant additional side-effects. TRIAL REGISTRATION: Clinicaltrials.gov NCT02067988 , 13 February 2014. Protocol version: 6, 30 november 2016.


Asunto(s)
Antineoplásicos/uso terapéutico , Embolización Terapéutica/métodos , Holmio/uso terapéutico , Neoplasias Hepáticas/terapia , Tumores Neuroendocrinos/terapia , Octreótido/análogos & derivados , Compuestos Organometálicos/uso terapéutico , Radioisótopos/uso terapéutico , Radiofármacos/uso terapéutico , Biomarcadores de Tumor , Terapia Combinada , Holmio/efectos adversos , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Metástasis de la Neoplasia , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/secundario , Octreótido/uso terapéutico , Calidad de Vida , Radioisótopos/efectos adversos , Radiofármacos/efectos adversos , Inducción de Remisión , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA