Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 10(1): 6388, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286411

RESUMEN

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas de Artrópodos/uso terapéutico , Enfermedades de los Caballos/tratamiento farmacológico , Melanoma/veterinaria , Proteínas y Péptidos Salivales/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Descubrimiento de Drogas , Caballos , Masculino , Melanoma/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos
2.
Biomed Pharmacother ; 82: 537-46, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27470394

RESUMEN

Fibroblasts are the main cellular component of connective tissues and play important roles in health and disease through the production of collagen, fibronectin and growth factors. Under certain conditions, such as wound healing, fibroblasts intensify their metabolic demand, while the restriction of nutrients affect matrix composition, cell metabolism and behavior. In lepidopterans, wound healing is regulated by ecdysteroid hormones, which upregulate multifunctional proteins such as hemolin. However, the role of hemolin in cell proliferation and wound healing is not clear. rLosac is a recombinant hemolin from the caterpillar Lonomia obliqua whose proliferative and cytoprotective effects on endothelial cells have been described. Here, we show that rLosac induces a marked cell survival effect on fibroblast submitted to serum deprivation, which is observable as early as 24h, as demonstrated through the MTT assay, as well as an increase in migration of human dermal fibroblasts (HDF). No effects on cell proliferation or cell cycle distribution of fibroblasts in normal conditions were observed, suggesting that rLosac induces an effect in stressful conditions such serum deprivation but not when nutrient are sufficient. By flow cytometry, rLosac caused an apparent dose-dependent increase in cells in the S phase of the cell cycle and a significant reduction of cells with fragmented DNA. Furthermore, treatment with rLosac results in a significant decrease in the production of reactive oxygen species and in the loss of mitochondrial membrane potential, indicating that a reduction in oxidative stress is involved in rLosac-mediated cytoprotection. Our results also show an up-regulation of Bcl-2 and a down-regulation of Bax protein levels, inhibition of cytochrome c release and a reduction in caspase-3 levels, all considered critical factors for apoptosis. Moreover, rLosac treatment reduces the morphological changes induced by prolonged serum deprivation including the emergence of apoptotic bodies, nucleus fragmentation, cytoplasmic vacuolization and loss of extracellular matrix organization. The wound scratch test assay revealed that rLosac could enhance wound healing in vitro. Altogether, these findings suggest that rLosac strongly induces cellular protection in conditions of stress by serum deprivation preventing damage and loss of mitochondrial function by inhibiting apoptosis. This finding opens a new perspective to further understand the role of hemolin proteins during cellular processes such as wound healing and development.


Asunto(s)
Apoptosis/efectos de los fármacos , Fibroblastos/citología , Inmunoglobulinas/farmacología , Proteínas de Insectos/farmacología , Animales , Caspasa 3/metabolismo , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero/farmacología , Dermis/citología , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Citometría de Flujo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Péptido Hidrolasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-28031734

RESUMEN

BACKGROUND: Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. METHODS: Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. RESULTS: The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. CONCLUSION: The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.

4.
Oncotarget ; 7(38): 62255-62266, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27566592

RESUMEN

Renal cell carcinoma (RCC), also called kidney cancer or renal adenocarcinoma, is highly resistant to current treatments. It has been previously reported that a Kunitz-type inhibitor domain-containing protein, isolated from the salivary glands of the Amblyomma cajennense tick, triggers apoptosis in murine renal adenocarcinoma cells (Renca) by inhibiting the proteasome and endoplasmic reticulum stress. Of note, Amblyomin-X is the corresponding recombinant protein identified in the cDNA library from A. cajennense salivary glands. Herein, using orthotopic kidney tumors in mice, we demonstrate that Amblyomin-X is able to drastically reduce the incidence of lung metastases by inducing cell cycle arrest and apoptosis. The in vitro assays show that Amblyomin-X is capable of reducing the proliferation rate of Renca cells, promoting cell cycle arrest, and down-regulating the expression of crucial proteins (cyclin D1, Ki67 and Pgp) involved in the aggressiveness and resistance of RCC. Regarding non-tumor cells (NIH3T3), Amblyomin-X produced minor effects in the cyclin D1 levels. Interestingly, observing the image assays, the fluorescence-labelled Amblyomin-X was indeed detected in the tumor stroma whereas in healthy animals it was rapidly metabolized and excreted. Taken the findings together, Amblyomin-X can be considered as a potential anti-RCC drug candidate.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Proteínas y Péptidos Salivales/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Proteínas de Artrópodos , Carcinoma de Células Renales/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclina D1/metabolismo , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Antígeno Ki-67/metabolismo , Riñón/patología , Neoplasias Renales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Proteínas y Péptidos Salivales/uso terapéutico , Pruebas de Toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eur J Med Chem ; 64: 200-14, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644203

RESUMEN

A set of substituted-[N'-(benzofuroxan-5-yl)methylene]benzohydrazides (4a-t), previously designed and synthesized, was experimentally assayed against Trypanosoma cruzi, the etiological agent of Chagas' disease, one of the most neglected tropical diseases. Exploratory data analysis, Hansch approach and VolSurf formalism were applied to aid the ligand-based design of novel anti-T. cruzi agents. The best 2D-QSAR model showed suitable statistical measures [n = 18; s = 0.11; F = 42.19; R(2) = 0.90 and Q(2) = 0.77 (SDEP = 0.15)], and according to the optimum 3D-QSAR model [R(2) = 0.98, Q(2) = 0.93 (SDEP = 0.08)], three latent variables explained 62% of the total variance from original data. Steric and hydrophobic properties were pointed out as the key for biological activity. Based upon the findings, six novel benzofuroxan derivatives (4u-z) were designed, synthesized, and in vitro assayed to perform the QSAR external prediction. Then, the predictability for the both models, 2D-QSAR (Rpred(2) = 0.91) and 3D-QSAR (Rpred(2) = 0.77), was experimentally validated, and compound 4u was identified as the most active anti-T. cruzi hit (IC50 = 3.04 µM).


Asunto(s)
Benzoxazoles/farmacología , Diseño de Fármacos , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Benzoxazoles/síntesis química , Benzoxazoles/química , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad Cuantitativa , Tripanocidas/síntesis química , Tripanocidas/química
6.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. ilus, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484658

RESUMEN

Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolins roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosacs in vivo effects using a skin wound healing model in rats. Methods Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. Results The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. Conclusion The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.


Asunto(s)
Cicatrización de Heridas , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/efectos adversos , Lepidópteros/química
7.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954806

RESUMEN

Background Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. Methods Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. Results The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. Conclusion The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.(AU)


Asunto(s)
Piel/lesiones , Cicatrización de Heridas , Heridas y Lesiones , Proteínas , Proliferación Celular , Células Epiteliales , Lepidópteros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA