Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 31(3): 461-471, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33574136

RESUMEN

CRISPR-Cas9 deletion (CRISPR-del) is the leading approach for eliminating DNA from mammalian cells and underpins a variety of genome-editing applications. Target DNA, defined by a pair of double-strand breaks (DSBs), is removed during nonhomologous end-joining (NHEJ). However, the low efficiency of CRISPR-del results in laborious experiments and false-negative results. By using an endogenous reporter system, we show that repression of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-an early step in NHEJ-yields substantial increases in DNA deletion. This is observed across diverse cell lines, gene delivery methods, commercial inhibitors, and guide RNAs, including those that otherwise display negligible activity. We further show that DNA-PKcs inhibition can be used to boost the sensitivity of pooled functional screens and detect true-positive hits that would otherwise be overlooked. Thus, delaying the kinetics of NHEJ relative to DSB formation is a simple and effective means of enhancing CRISPR-deletion.


Asunto(s)
Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Edición Génica , Eliminación de Secuencia , Animales , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo
2.
Nat Commun ; 14(1): 3342, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291246

RESUMEN

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Animales , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/genética , Mutación , Oncogenes , Genómica
3.
Curr Opin Genet Dev ; 76: 101963, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35939967

RESUMEN

An essential gene encodes for a cellular function that is required for viability. Although viability is a straightforward phenotype to analyze in yeast, defining a gene as essential is not always trivial. Gene essentiality has generally been studied in specific laboratory strains and under standard growth conditions, however, essentiality can vary across species, strains, and environments. Recent systematic studies of gene essentiality revealed that two sets of essential genes exist: core essential genes that are always required for viability and conditional essential genes that vary in essentiality in different genetic and environmental contexts. Here, we review recent advances made in the systematic analysis of gene essentiality in yeast and discuss the properties that distinguish core from context-dependent essential genes.


Asunto(s)
Genes Esenciales , Saccharomyces cerevisiae , Genes Esenciales/genética , Fenotipo , Saccharomyces cerevisiae/genética
4.
NAR Cancer ; 3(2): zcab013, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316704

RESUMEN

Long non-coding RNAs (lncRNAs) play key roles in cancer and are at the vanguard of precision therapeutic development. These efforts depend on large and high-confidence collections of cancer lncRNAs. Here, we present the Cancer LncRNA Census 2 (CLC2). With 492 cancer lncRNAs, CLC2 is 4-fold greater in size than its predecessor, without compromising on strict criteria of confident functional/genetic roles and inclusion in the GENCODE annotation scheme. This increase was enabled by leveraging high-throughput transposon insertional mutagenesis screening data, yielding 92 novel cancer lncRNAs. CLC2 makes a valuable addition to existing collections: it is amongst the largest, contains numerous unique genes (not found in other databases) and carries functional labels (oncogene/tumour suppressor). Analysis of this dataset reveals that cancer lncRNAs are impacted by germline variants, somatic mutations and changes in expression consistent with inferred disease functions. Furthermore, we show how clinical/genomic features can be used to vet prospective gene sets from high-throughput sources. The combination of size and quality makes CLC2 a foundation for precision medicine, demonstrating cancer lncRNAs' evolutionary and clinical significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA