Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pediatr Gastroenterol Nutr ; 65(5): 496-499, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28248795

RESUMEN

OBJECTIVES: Serious and even fatal consequences of disk batteries ingestion in children are well known. Among other applications, disk batteries are used to power small toys, from which they can be unexpectedly extracted and swallowed. METHODS: We tested a new cell intended for little toys (green cell [GC]), after 6 and 12 hours of in vitro close contact with esophageal swine mucosa. The GC was compared with lithium and silver button batteries under the same experimental conditions. RESULTS: Tissues in contact with the GC did not show pH variations nor histological alterations after 6 and 12 hours. In such conditions, statistically significant differences were found between the GC and the lithium and silver batteries. CONCLUSIONS: So far, multidisciplinary medical effort has been driven to both emergency approach and subsequent operative strategies in children with ingested batteries. Our trial demonstrates the possibility to primarily prevent battery-induced damages by designing new-generation safe cells with no tissue toxicity to power little toys intended for children.


Asunto(s)
Ingestión de Alimentos , Suministros de Energía Eléctrica/efectos adversos , Mucosa Esofágica/lesiones , Cuerpos Extraños/complicaciones , Juego e Implementos de Juego/lesiones , Seguridad , Animales , Mucosa Esofágica/fisiopatología , Cuerpos Extraños/fisiopatología , Técnicas In Vitro , Porcinos
2.
Micromachines (Basel) ; 14(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36677193

RESUMEN

The mechanisms of deep-hole microdrilling of pure Mg material were experimentally studied in order to find a suitable setup for a novel intraocular drug delivery device prototyping. Microdrilling tests were performed with 0.20 mm and 0.35 mm microdrills, using a full factorial design in which cutting speed vc and feed fz were varied over two levels. In a preliminary phase, the chip shape was evaluated for low feeds per tooth down to 1 µm, to verify that the chosen parameters were appropriate for machining. Subsequently, microdrilling experiments were carried out, in which diameter, burr height and surface roughness of the drilled holes were examined. The results showed that the burr height is not uniform along the circumference of the holes. In particular, the maximum burr height increases with higher cutting speed, due to the thermal effect that plasticizes Mg. Hole entrance diameters are larger than the nominal tool diameters due to tool runout, and their values are higher for high vc and fz. In addition, the roughness of the inner surface of the holes increases as fz increases.

3.
Ann Anat ; 250: 152141, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499701

RESUMEN

This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p < 0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.


Asunto(s)
Meniscos Tibiales , Menisco , Perros , Animales , Meniscos Tibiales/química , Articulación de la Rodilla , Menisco/química , Colágeno Tipo I , Glicosaminoglicanos
4.
Front Cardiovasc Med ; 9: 1013183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465472

RESUMEN

The constantly increasing incidence of coronary artery disease worldwide makes necessary to set advanced therapies and tools such as tissue engineered vessel grafts (TEVGs) to surpass the autologous grafts [(i.e., mammary and internal thoracic arteries, saphenous vein (SV)] currently employed in coronary artery and vascular surgery. To this aim, in vitro cellularization of artificial tubular scaffolds still holds a good potential to overcome the unresolved problem of vessel conduits availability and the issues resulting from thrombosis, intima hyperplasia and matrix remodeling, occurring in autologous grafts especially with small caliber (<6 mm). The employment of silk-based tubular scaffolds has been proposed as a promising approach to engineer small caliber cellularized vascular constructs. The advantage of the silk material is the excellent manufacturability and the easiness of fiber deposition, mechanical properties, low immunogenicity and the extremely high in vivo biocompatibility. In the present work, we propose a method to optimize coverage of the luminal surface of silk electrospun tubular scaffold with endothelial cells. Our strategy is based on seeding endothelial cells (ECs) on the luminal surface of the scaffolds using a low-speed rolling. We show that this procedure allows the formation of a nearly complete EC monolayer suitable for flow-dependent studies and vascular maturation, as a step toward derivation of complete vascular constructs for transplantation and disease modeling.

5.
Bioengineering (Basel) ; 9(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35324808

RESUMEN

The analysis of the morphological, structural, biochemical, and mechanical changes of the Extracellular Matrix (ECM), which occur during meniscus development, represents the goal of the present study. Medial fully developed menisci (FD, 9-month-old pigs), partially developed menisci (PD, 1-month-old piglets), and not developed menisci (ND, from stillbirths) were collected. Cellularity and glycosaminoglycans (GAGs) deposition were evaluated by ELISA, while Collagen 1 and aggrecan were investigated by immunohistochemistry and Western blot analyses in order to be compared to the biomechanical properties of traction and compression tensile forces, respectively. Cellularity decreased from ND to FD and GAGs showed the opposite trend (p < 0.01 both). Collagen 1 decreased from ND to FD, as well as the ability to resist to tensile traction forces (p < 0.01), while aggrecan showed the opposite trend, in accordance with the biomechanics: compression test showed that FD meniscus greatly resists to deformation (p < 0.01). This study demonstrated that in swine meniscus, clear morphological and biomechanical changes follow the meniscal maturation and specialization during growth, starting with an immature pattern (ND) to the mature organized meniscus of the FD, and they could be useful to understand the behavior of this structure in the light of its tissue bioengineering.

6.
Front Bioeng Biotechnol ; 10: 918690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061430

RESUMEN

3D-Bioprinting leads to the realization of tridimensional customized constructs to reproduce the biological structural complexity. The new technological challenge focuses on obtaining a 3D structure with several distinct layers to replicate the hierarchical organization of natural tissues. This work aims to reproduce large blood vessel substitutes compliant with the original tissue, combining the advantages of the 3D bioprinting, decellularization, and accounting for the presence of different cells. The decellularization process was performed on porcine aortas. Various decellularization protocols were tested and evaluated through DNA extraction, quantification, and amplification by PCR to define the adequate one. The decellularized extracellular matrix (dECM), lyophilized and solubilized, was combined with gelatin, alginate, and cells to obtain a novel bioink. Several solutions were tested, tuning the percentage of the components to obtain the adequate structural properties. The geometrical model of the large blood vessel constructs was designed with SolidWorks, and the construct slicing was done using the HeartWare software, which allowed generating the G-Code. The final constructs were 3D bioprinted with the Inkredible + using dual print heads. The composition of the bioink was tuned so that it could withstand the printing of a segment of a tubular construct up to 10 mm and reproduce the multicellular complexity. Among the several compositions tested, the suspension resulting from 8% w/v gelatin, 7% w/v alginate, and 3% w/v dECM, and cells successfully produced the designed structures. With this bioink, it was possible to print structures made up of 20 layers. The dimensions of the printed structures were consistent with the designed ones. We were able to avoid the double bioink overlap in the thickness, despite the increase in the number of layers during the printing process. The optimization of the parameters allowed the production of structures with a height of 20 layers corresponding to 9 mm. Theoretical and real structures were very close. The differences were 14% in height, 20% internal diameter, and 9% thickness. By tailoring the printing parameters and the amount of dECM, adequate mechanical properties could be met. In this study, we developed an innovative printable bioink able to finely reproduce the native complex structure of the large blood vessel.

7.
J Appl Biomater Biomech ; 9(2): 109-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22065388

RESUMEN

Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.


Asunto(s)
Ingeniería Biomédica/métodos , Ingeniería Biomédica/tendencias , Sistemas de Manutención de la Vida/instrumentación , Modelos Cardiovasculares , Adolescente , Procedimientos Quirúrgicos Cardíacos/instrumentación , Procedimientos Quirúrgicos Cardíacos/métodos , Procedimientos Quirúrgicos Cardíacos/tendencias , Niño , Preescolar , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/tendencias , Lactante , Programas Informáticos/tendencias
8.
Bioengineering (Basel) ; 8(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499168

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly worldwide. So far, the etiology and the progression of AMD are not well known. Animal models have been developed to study the mechanisms involved in AMD; however, according to the "Three Rs" principle, alternative methods have been investigated. Here we present a strategy to develop a "Three Rs" compliant retinal three-dimensional (3D) in vitro model, including a Bruch's membrane model and retina pigment epithelium (RPE) layer. First, tensile testing was performed on porcine retina to set a reference for the in vitro model. The results of tensile testing showed a short linear region followed by a plastic region with peaks. Then, Bruch's membrane (BrM) was fabricated via electrospinning by using Bombyx mori silk fibroin (BMSF) and polycaprolactone (PCL). The BrM properties and ARPE-19 cell responses to BrM substrates were investigated. The BrM model displayed a thickness of 44 µm, with a high porosity and an average fiber diameter of 1217 ± 101 nm. ARPE-19 cells adhered and spread on the BMSF/PCL electrospun membranes. In conclusion, we are developing a novel 3D in vitro retinal model towards the replacement of animal models in AMD studies.

9.
PLoS One ; 16(4): e0249949, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33857213

RESUMEN

AIM: To evaluate quantitatively the effects of the Epi-Off-CXL irradiance dose on the stromal stiffening of pig corneas. SETTING: Laboratory of Biological structures (LaBS), Politecnico di Milano, Milano, Italy. METHODS: Inflation tests have been carried on 90 excised and de-epithelized pig corneas, monitoring the change of configuration of the corneal dome at specific pressures. Test have been carried out twice on each cornea, once before and once after Epi-Off-CXL performed at a constant irradiance of 9 mW/cm2 and variable UV-A exposure times. Corneas were grouped according to the exposure time (2.5, 5, 10, 15 and 20 min), proportional to the irradiation dose (1.35, 2.7, 5.4, 8.1, and 10.8 J/cm2). A theoretical model based on linearized shell theory has been used to estimate the increment of the corneal stiffness. RESULTS: The linearized shell theory allowed to establish a quantitative relation between the increment of the stiffness parameters and the irradiation dose. Relative to the pre-treatment values, in all experiments the post-treatment corneal stiffness revealed a pronounced increase. In general, the stiffness gain increased with the exposure time. No significant differences in stiffening was observed between tests conducted at 2.5, 5, and 10 min exposure. CONCLUSIONS: Qualitatively, the effectiveness of accelerated CXL treatments observed in pig corneas complies very well with in-vivo clinical results in humans, suggesting that experimental data in pigs can be very useful for the design of the procedure in humans. A larger irradiation dose provides a larger increment of the corneal stiffness. Due to the biological variability of the tissues, however, it is difficult to distinguish quantitatively the level of the reinforcement induced by accelerated protocols (low doses with < = 10 min exposure), less prone to induce damage in the corneal tissue. Therefore, the definition of personalized treatments must be related to the actual biomechanics of the cornea.


Asunto(s)
Colágeno/metabolismo , Córnea/fisiología , Reactivos de Enlaces Cruzados/farmacología , Animales , Córnea/efectos de los fármacos , Córnea/efectos de la radiación , Módulo de Elasticidad , Modelos Animales , Dosis de Radiación , Porcinos , Factores de Tiempo , Rayos Ultravioleta
10.
Bioengineering (Basel) ; 8(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065530

RESUMEN

The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress-relaxation tests comprised of increasing strains followed by stress-relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.

11.
Biomolecules ; 11(5)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946440

RESUMEN

Cell's microenvironment has been shown to exert influence on cell behavior. In particular, matrix-cell interactions strongly impact cell morphology and function. The purpose of this study was to analyze the influence of different culture substrate materials on phenotype and functional properties of lung epithelial adenocarcinoma (A549) cells. A549 cells were seeded onto two different biocompatible, commercially available substrates: a polyester coverslip (Thermanox™ Coverslips), that was used as cell culture plate control, and a polydimethylsiloxane membrane (PDMS, Elastosil® Film) investigated in this study as alternative material for A549 cells culture. The two substrates influenced cell morphology and the actin cytoskeleton organization. Further, the Yes-associated protein (YAP) and its transcriptional coactivator PDZ-binding motif (TAZ) were translocated to the nucleus in A549 cells cultured on polyester substrate, yet it remained mostly cytosolic in cells on PDMS substrate. By SEM analysis, we observed that cells grown on Elastosil® Film maintained an alveolar Type II cell morphology. Immunofluorescence staining for surfactant-C revealing a high expression of surfactant-C in cells cultured on Elastosil® Film, but not in cells cultured on Thermanox™ Coverslips. A549 cells grown onto Elastosil® Film exhibited morphology and functionality that suggest retainment of alveolar epithelial Type II phenotype, while A549 cells grown onto conventional plastic substrates acquired an alveolar Type I phenotype.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Dimetilpolisiloxanos/farmacología , Poliésteres/farmacología , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Células A549 , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Medios de Cultivo , Humanos , Lipopéptidos/biosíntesis , Pulmón/citología , Pulmón/efectos de los fármacos , Microscopía Electroquímica de Rastreo , Péptidos Cíclicos/biosíntesis , Factores de Transcripción/biosíntesis , Proteínas Señalizadoras YAP
12.
J Physiol ; 588(Pt 20): 3957-69, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20724369

RESUMEN

The role of the mechanical properties of the initial lymphatic wall and of the surrounding tissue in supporting lymph formation and/or progression was studied in six anaesthetized, neuromuscularly blocked and mechanically ventilated rats. After mid-sternal thoracotomy, submesothelial initial lymphatics were identified on the pleural diaphragmatic surface through stereomicroscopy. An 'in vivo' lymphatic segment was prepared by securing two surgical threads around the vessel at a distance of ∼2.5 mm leaving the vessel in place. Two glass micropipettes were inserted into the lumen, one for intraluminar injections of 4.6 nl saline boluses and one for hydraulic pressure (Plymph) recording. The compliance of the vessel wall (Clymph) was calculated as the slope of the plot describing the change in segment volume as a function of the post-injection Plymph changes. Two superficial lymphatic vessel populations with a significantly different Clymph (6.7 ± 1.6 and 1.5 ± 0.4 nl mmHg−1 (mean ± S.E.M.), P < 0.001) were identified. In seven additional rats, the average elastic modulus of diaphragmatic tissue strips was determined by uniaxial tension tests to be 1.7 ± 0.3 MPa. Clymph calculated for an initial lymphatic completely surrounded by isotropic tissue was 0.068 nl mmHg−1, i.e. two orders of magnitude lower than in submesothelial lymphatics. Modelling of stress distribution in the lymphatic wall suggests that compliant vessels may act as reservoirs accommodating large absorbed fluid volumes, while lymphatics with stiffer walls serve to propel fluid through the lumen of the lymphatic vessel by taking advantage of the more efficient mechanical transmission of tissue stresses to the lymphatic lumen.


Asunto(s)
Diafragma/fisiología , Sistema Linfático/fisiología , Análisis de Varianza , Animales , Masculino , Pleura/fisiología , Ratas , Ratas Wistar , Respiración Artificial , Estadísticas no Paramétricas , Estrés Mecánico
13.
Knee Surg Sports Traumatol Arthrosc ; 18(10): 1400-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20033674

RESUMEN

Research in tissue engineering has been focused on articular cartilage repair for more than a decade. Some pioneristic studies involved the use of hydrogels such as alginate and fibrin glue which still possess valuable potential for cartilage regeneration. One of the main issues in cartilage tissue engineering is represented by the ideal maturation of the construct, before in vivo implantation, in order to optimize matrix quality and integration. The present study was focused on the effect of in vitro culture on a fibrin glue hydrogel embedding swine chondrocytes. We performed an evaluation of the immunohistochemical and biochemical composition and of the biomechanical properties of the construct after 1 and 5 weeks of culture. We noticed that chondrocytes survived in the fibrin glue gel and enhanced their synthetic activity. In fact, DNA content remained stable, while all indices of cartilage matrix production increased (GAGs content, immunohistochemistry for collagen II and safranin-o staining). On the other hand, the biomechanical properties remained steady, indicating a gradual substitution of the hydrogel scaffold by cartilaginous matrix. This demonstrates that an optimal preculture could provide the surgeon with a better engineered cartilage for implantation. However, whether this more mature tissue will result in a more efficient regeneration of the articular surface still has to be evaluated in future investigations.


Asunto(s)
Cartílago Articular/cirugía , Condrocitos/trasplante , Adhesivo de Tejido de Fibrina/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Fenómenos Biomecánicos , Cartílago Articular/citología , Células Cultivadas , Modelos Animales de Enfermedad , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Etiquetado Corte-Fin in Situ , Prótesis e Implantes , Sensibilidad y Especificidad , Estadísticas no Paramétricas , Porcinos
14.
Med Eng Phys ; 82: 49-57, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32709265

RESUMEN

The purpose of this study is to investigate the effect of vitreous sloshing induced by saccades on the intravitreal delivery of large molecule drugs. The vitreous body was considered in its age-related liquefaction condition. Fluid dynamics and large molecule distribution were described by the coupling of mass conservation's and Fick's laws with continuity and momentum equations for a Newtonian incompressible fluid in a 3D unsteady analysis. Two injection sites were analyzed, in both the mixing effect of a 50° periodic saccade leads to uniform drug distribution in 30 s of simulation, the initial bolus site being left after 3 s of simulation. In absence of saccadic movements, the dominant transport contribution is the diffusive one and large molecules hardly reach their uniform distribution inside the vitreous cavity. A model describing the intravitreal distribution of large molecules in presence of saccades was developed, improving the understanding of drug transport mechanism after an intravitreal injection and highlighting how advection contribution enhances its distribution in the vitreous chamber.


Asunto(s)
Modelos Biológicos , Preparaciones Farmacéuticas , Humanos , Hidrodinámica , Inyecciones Intravítreas , Cuerpo Vítreo
15.
Med Eng Phys ; 86: 20-28, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33261729

RESUMEN

Magnesium is an essential element for the ocular functions and used for the realization of medical devices due to its low corrosion resistance, bioresorbable nature and biocompatibility. Wet age-related macular degeneration is one of the main causes of blindness with patients treated by intravitreal injections of inhibitor drugs. According to the need to reduce the number of injections, the development of new drug delivery devices able to extend the therapeutical outcomes is mandatory and magnesium can be considered as a promising candidate. The aim of the work concerns the evaluation of the ocular fluid dynamic role on a magnesium-based device placed in the vitreous chamber. Particularly, the fluid-induced shear stress field on the surfaces in contact with the liquefied vitreous was studied. Both computational fluid dynamic and fluid-structure interaction approaches were proposed and then compared. Saccadic motion was implemented to recreate the vitreous fluid dynamics. High changes in terms of fluid-induced shear stress field varying the CFD and FSI numerical approaches and kinematic parameters of the saccadic function can be noticed. The comparison between CFD and FSI approaches showed minor significant differences and both implementations suggested the possibility to obtain a uniform and controlled corrosion of the device.


Asunto(s)
Hidrodinámica , Preparaciones Farmacéuticas , Simulación por Computador , Humanos , Magnesio , Estrés Mecánico
16.
Cells ; 9(2)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973209

RESUMEN

Joint motion and postnatal stress of weight bearing are the principal factors that determine the phenotypical and architectural changes that characterize the maturation process of the meniscus. In this study, the effect of compressive forces on the meniscus will be evaluated in a litter of 12 Dobermann Pinschers, of approximately 2 months of age, euthanized as affected by the quadriceps contracture muscle syndrome of a single limb focusing on extracellular matrix remodeling and cell-extracellular matrix interaction (i.e., meniscal cells maturation, collagen fibers typology and arrangement). The affected limbs were considered as models of continuous compression while the physiologic loaded limbs were considered as controls. The results of this study suggest that a compressive continuous force, applied to the native meniscal cells, triggers an early maturation of the cellular phenotype, at the expense of the proper organization of collagen fibers. Nevertheless, an application of a compressive force could be useful in the engineering process of meniscal tissue in order to induce a faster achievement of the mature cellular phenotype and, consequently, the earlier production of the fundamental extracellular matrix (ECM), in order to improve cellular viability and adhesion of the cells within a hypothetical synthetic scaffold.


Asunto(s)
Fuerza Compresiva/fisiología , Matriz Extracelular/fisiología , Menisco/fisiología , Animales , Fenómenos Biomecánicos , ADN/metabolismo , Perros , Módulo de Elasticidad , Glicosaminoglicanos/metabolismo , Imagen por Resonancia Magnética , Menisco/diagnóstico por imagen
17.
Biotechnol Bioeng ; 103(1): 217-25, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19148875

RESUMEN

The field of mechanobiology has grown tremendously in the past few decades, and it is now well accepted that dynamic stresses and strains can impact cell and tissue organization, cell-cell and cell-matrix communication, matrix remodeling, cell proliferation and apoptosis, cell migration, and many other cell behaviors in both physiological and pathophysiological situations. Natural reconstituted matrices like collagen and fibrin are often used for three-dimensional (3D) mechanobiology studies because they naturally form fibrous architectures and are rich in cell adhesion sites; however, they are physically weak and typically contain >99% water, making it difficult to apply dynamic stresses to them in a truly 3D context. Here we present a composite matrix and strain device that can support natural matrices within a macroporous elastic structure of polyurethane. We characterize this system both in terms of its mechanical behavior and its ability to support the growth and in vivo-like behaviors of primary human lung fibroblasts cultured in collagen. The porous polyurethane was created with highly interconnected pores in the hundreds of microm size scale, so that while it did not affect cell behavior in the collagen gel within the pores, it could control the overall elastic behavior of the entire tissue culture system. In this way, a well-defined dynamic strain could be imposed on the 3D collagen and cells within the collagen for several days (with elastic recoil driven by the polyurethane) without the typical matrix contraction by fibroblasts when cultured in 3D collagen gels. We show lung fibroblast-to-myofibroblast differentiation under 30%, 0.1 Hz dynamic strain to validate the model and demonstrate its usefulness for a wide range of tissue engineering applications.


Asunto(s)
Colágeno/biosíntesis , Fibroblastos/fisiología , Diferenciación Celular , Humanos , Técnicas de Cultivo de Órganos
18.
Stem Cells Int ; 2019: 5267479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31558905

RESUMEN

Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Among several biomaterials, decellularized xenografts are available in large quantity and could represent a possible solution for tendon reconstruction. The present study is aimed at evaluating TE xenografts in Achilles tendon defects. Specifically, the ability to enhance the biomechanical functionality, while improving the graft interaction with the host, was tested. The combination of decellularized equine-derived tendon xenografts with or without the matrix repopulation with autologous bone marrow mesenchymal stem cells (BMSCs) under stretch-perfusion dynamic conditions might improve the side-to-side tendon reconstruction. Thirty-six New Zealand rabbits were used to create 2 cm long segmental defects of the Achilles tendon. Then, animals were implanted with autograft (AG) as the gold standard control, decellularized graft (DG), or in vitro tissue-engineered graft (TEG) and evaluated postoperatively at 12 weeks. After sacrifice, histological, immunohistochemical, biochemical, and biomechanical analyses were performed along with the matrix metalloproteinases. The results demonstrated the beneficial role of undifferentiated BMSCs loaded within decellularized xenografts undergoing a stretch-perfusion culture as an immunomodulatory weapon reducing the inflammatory process. Interestingly, AG and TEG groups exhibited similar results, behaved similarly, and showed a significant superior tissue healing compared to DG in terms of newly formed collagen fibres and biomechanical parameters. Whereas, DG demonstrated a massive inflammatory and giant cell response associated with graft destruction and necrosis, absence of type I and III collagen, and a higher amount of proteoglycans and MMP-2, thus unfavourably affecting the biomechanical response. In conclusion, this in vivo study suggests a potential use of the proposed tissue-engineered constructs for tendon reconstruction.

19.
Tissue Eng Part A ; 25(13-14): 978-989, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30398398

RESUMEN

IMPACT STATEMENT: The importance of the present study is linked to how the contact forces act on the knee meniscus in particular, considering the femoral condyles and tibial plateau: this can be useful as a base for the ultimate creation of tissue-engineered biphasic scaffolds, which can mimic the native tissue complex, for meniscal repair or regeneration.


Asunto(s)
Fémur/fisiología , Meniscos Tibiales/fisiología , Tibia/fisiología , Animales , Fenómenos Biomecánicos , Colágeno Tipo I/metabolismo , ADN/metabolismo , Femenino , Fémur/diagnóstico por imagen , Glicosaminoglicanos/metabolismo , Meniscos Tibiales/diagnóstico por imagen , Porcinos , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X
20.
Biorheology ; 45(3-4): 337-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18836234

RESUMEN

Osteoarthritis (OA) is a disease affecting articular cartilage and the underlying bone, resulting from many biological and mechanical interacting factors which change the extracellular matrix (ECM) and cells and lead to increasing levels of cartilage degeneration, like softening, fibrillation, ulceration and cartilage loss. The early diagnosis of the disease is fundamental to prevent pain, further tissue degeneration and reduce hospital costs. Although morphological modifications can be detected by modern non-invasive diagnostic techniques, they may not be evident in the early stages of OA. The mechanical properties of articular cartilage are related to its composition and structure and are sensitive to even small changes in the ECM that could occur in early OA. The aim of the present study was to compare the mechanical properties of healthy and OA cartilage using a combined experimental-numerical approach. Experimental assessments consisted of step wise confined and unconfined compression and tension stress relaxation tests on disks (for compression) or strips (for tension) of cartilage obtained from human femoral heads discarded from the operating room after total hip replacement. The numerical model was based on the biphasic theory and included the tension-compression non-linearity. Considering OA samples vs normal samples, the static compressive modulus was 55-68% lower, the permeability was 60-80% higher, the dynamic compressive modulus was 59-64% lower, the static tension modulus was 72-83% lower. The model successfully simulated the experimental tests performed on healthy and OA cartilage and was used in combination with the experimental tests to evaluate the role of different ECM components in the mechanical response of normal and OA cartilage.


Asunto(s)
Cartílago Articular/patología , Cartílago Articular/fisiopatología , Osteoartritis/patología , Osteoartritis/fisiopatología , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Fuerza Compresiva , Elasticidad/fisiología , Matriz Extracelular/fisiología , Humanos , Mecanotransducción Celular , Valores de Referencia , Estrés Mecánico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA