RESUMEN
Xenon (Xe) is a valuable and scarce noble gas used in various applications, including lighting, electronics, and anesthetics, among many others. It is also a volatile byproduct of the nuclear fission of uranium. A novel material architecture consisting of silicate nanocages in contact with a metal surface and an approach for trapping single Xe atoms in these cages is presented. The trapping is done at low Xe pressures and temperatures between 400 and 600 K, and the process is monitored in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. Release of the Xe from the cages occurs only when heating to temperatures above 750 K. A model that explains the experimental trapping kinetics is proposed and tested using Monte Carlo methods. Density functional theory calculations show activation energies for Xe exiting the cages consistent with experiments. This work can have significant implications in various fields, including Xe production, nuclear power, nuclear waste remediation, and nonproliferation of nuclear weapons. The results are also expected to apply to argon, krypton, and radon, opening an even more comprehensive range of applications.
Asunto(s)
Dióxido de Silicio , Xenón , Criptón , Método de Montecarlo , TemperaturaRESUMEN
Silicates are the most abundant materials in the earth's crust. In recent years, two-dimensional (2D) versions of them grown on metal supports (known as bilayer silicates) have allowed their study in detail down to the atomic scale. These structures are self-containing. They are not covalently bound to the metal support but interact with it through van der Waals forces. Like their three-dimensional counterparts, the 2D-silicates can form both crystalline and vitreous structures. Furthermore, the interconversion between vitreous to crystalline structures has been experimentally observed at the nanoscale. While theoretical work has been carried out to try to understand these transformations, a limitation for ab initio methods, and even molecular dynamics methods, is the computational cost of studying large systems and long timescales. In this work, we present a simple and computationally inexpensive approach, that can be used to represent the evolution of bilayer silicates using a bond-switching algorithm. This approach allows reaching equilibrium ring size distributions as a function of a parameter that can be related to the ratio between temperature and the energy required for the bond-switching event. The ring size distributions are compared to experimental data available in the literature.
RESUMEN
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.