Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO Rep ; 25(1): 168-197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225354

RESUMEN

Cell commitment to tumourigenesis and the onset of uncontrolled growth are critical determinants in cancer development but the early events directing tumour initiating cell (TIC) fate remain unclear. We reveal a single-cell transcriptome profile of brain TICs transitioning into tumour growth using the brain tumour (brat) neural stem cell-based Drosophila model. Prominent changes in metabolic and proteostasis-associated processes including ribogenesis are identified. Increased ribogenesis is a known cell adaptation in established tumours. Here we propose that brain TICs boost ribogenesis prior to tumour growth. In brat-deficient TICs, we show that this dramatic change is mediated by upregulated HEAT-Repeat Containing 1 (HEATR1) to promote ribosomal RNA generation, TIC enlargement and onset of overgrowth. High HEATR1 expression correlates with poor glioma patient survival and patient-derived glioblastoma stem cells rely on HEATR1 for enhanced ribogenesis and tumourigenic potential. Finally, we show that HEATR1 binds the master growth regulator MYC, promotes its nucleolar localisation and appears required for MYC-driven ribogenesis, suggesting a mechanism co-opted in ribogenesis reprogramming during early brain TIC development.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antígenos de Histocompatibilidad Menor , Proteínas Proto-Oncogénicas c-myc , Proteínas de Unión al ARN , Animales , Humanos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glioblastoma/metabolismo , Glioma/patología , Antígenos de Histocompatibilidad Menor/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Neurobiol Dis ; 105: 74-83, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28502805

RESUMEN

Tau exists as six closely related protein isoforms in the adult human brain. These are generated from alternative splicing of a single mRNA transcript and they differ in the absence or presence of two N-terminal and three or four microtubule binding domains. Typically all six isoforms have been considered functionally similar. However, their differential involvement in particular tauopathies raises the possibility that there may be isoform-specific differences in physiological function and pathological role. To explore this, we have compared the phenotypes induced by the 0N3R and 0N4R isoforms in Drosophila. Expression of the 3R isoform causes more profound axonal transport defects and locomotor impairments, culminating in a shorter lifespan than the 4R isoform. In contrast, the 4R isoform leads to greater neurodegeneration and impairments in learning and memory. Furthermore, the phosphorylation patterns of the two isoforms are distinct, as is their ability to induce oxidative stress. These differences are not consequent to different expression levels and are suggestive of bona fide physiological differences in isoform biology and pathological potential. They may therefore explain isoform-specific mechanisms of tau-toxicity and the differential susceptibility of brain regions to different tauopathies.


Asunto(s)
Modelos Animales de Enfermedad , Secuencias Repetidas en Tándem/genética , Tauopatías/genética , Tauopatías/fisiopatología , Proteínas tau/genética , Factores de Edad , Animales , Animales Modificados Genéticamente , Transporte Axonal , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Humanos , Larva/genética , Aprendizaje/fisiología , Locomoción/genética , Masculino , Memoria/fisiología , Fenotipo , Fosforilación , Isoformas de Proteínas/metabolismo , Tauopatías/mortalidad , Tauopatías/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vías Visuales/metabolismo , Proteínas tau/metabolismo
3.
Neuronal Signal ; 6(1): NS20210051, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35474685

RESUMEN

Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.

4.
STAR Protoc ; 3(4): 101735, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36181682

RESUMEN

Here, we describe a protocol to remove single identified cells directly from Drosophila living brains and analyze their transcriptome. We detail the steps to harvest fluorescent cells using a capillary under epifluorescence and transmitted light to avoid contamination. We then outline the procedure to obtain the transcriptome by reverse transcription and amplification. The process from cell harvesting to the initiation of reverse transcription only takes 2 min, thus avoiding transcriptional activation of cell damage response or cell death genes. For complete details on the use and execution of this protocol, please refer to Barros and Bossing (2021), Bossing et al. (2012), Gil-Ranedo et al. (2019), and Liu and Bossing (2016).


Asunto(s)
Drosophila melanogaster , Perfilación de la Expresión Génica , Animales , Drosophila , Encéfalo , Transcriptoma
5.
Dev Cell ; 11(6): 775-89, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17141154

RESUMEN

Stem cells have the remarkable ability to give rise to both self-renewing and differentiating daughter cells. Drosophila neural stem cells segregate cell-fate determinants from the self-renewing cell to the differentiating daughter at each division. Here, we show that one such determinant, the homeodomain transcription factor Prospero, regulates the choice between stem cell self-renewal and differentiation. We have identified the in vivo targets of Prospero throughout the entire genome. We show that Prospero represses genes required for self-renewal, such as stem cell fate genes and cell-cycle genes. Surprisingly, Prospero is also required to activate genes for terminal differentiation. We further show that in the absence of Prospero, differentiating daughters revert to a stem cell-like fate: they express markers of self-renewal, exhibit increased proliferation, and fail to differentiate. These results define a blueprint for the transition from stem cell self-renewal to terminal differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Genoma , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre/metabolismo , Factores de Transcripción/genética
6.
Cell Rep ; 36(1): 109325, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233183

RESUMEN

Repair after traumatic injury often starts with mitotic activation around the lesion edges. Early midline cells in the Drosophila embryonic CNS can enter into division following the traumatic disruption of microtubules. We demonstrate that microtubule disruption activates non-canonical TNF signaling by phosphorylation of TGF-ß activated kinase 1 (Tak1) and its target IkappaB kinase (Ik2), culminating in Dorsal/NfkappaB nuclear translocation and Jra/Jun expression. Tak1 and Ik2 are necessary for the damaged-induced divisions. Microtubule disruption caused by Tau accumulation is also reported in Alzheimer's disease (AD). Human Tau expression in Drosophila midline cells is sufficient to induce Tak1 phosphorylation, Dorsal and Jra/Jun expression, and entry into mitosis. Interestingly, activation of Tak1 and Tank binding kinase 1 (Tbk1), the human Ik2 ortholog, and NfkappaB upregulation are observed in AD brains.


Asunto(s)
Sistema Nervioso Central/patología , Drosophila melanogaster/metabolismo , Microtúbulos/patología , Mitosis , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Muerte Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Desarrollo Embrionario , Humanos , Microtúbulos/metabolismo , FN-kappa B/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
7.
Acta Neuropathol ; 120(5): 593-604, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20617325

RESUMEN

It has been hypothesised that tau protein, when hyper-phosphorylated as in Alzheimer's disease (AD), does not bind effectively to microtubules and is no longer able to stabilise them; thus microtubules break down, and axonal transport can no longer proceed efficiently in affected brain regions in AD and related tauopathies (tau-microtubule hypothesis). We have used Drosophila models of tauopathy to test all components of this hypothesis in vivo. We have previously shown that upon expression of human 0N3R tau in Drosophila motor neurons it becomes highly phosphorylated, resulting in disruptions to both axonal transport and synaptic function which culminate in behavioural phenotypes. We now show that the mechanism by which the human tau mediates these effects is twofold: first, as predicted by the tau-microtubule hypothesis, the highly phosphorylated tau exhibits significantly reduced binding to microtubules; and second, it participates in a pathogenic interaction with the endogenous normal Drosophila tau and sequesters it away from microtubules. This causes disruption of the microtubular cytoskeleton as evidenced by a reduction in the numbers of intact correctly-aligned microtubules and the appearance of microtubules that are not correctly oriented within the axon. These deleterious effects of human tau are phosphorylation dependent because treatment with LiCl to suppress tau phosphorylation increases microtubule binding of both human and Drosophila tau and restores cytoskeletal integrity. Notably, all these phospho-tau-mediated phenotypes occur in the absence of tau filament/neurofibrillary tangle formation or neuronal death, and may thus constitute the mechanism by which hyper-phosphorylated tau disrupts neuronal function and contributes to cognitive impairment prior to neuronal death in the early stages of tauopathies.


Asunto(s)
Microtúbulos/metabolismo , Microtúbulos/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas tau/metabolismo , Animales , Western Blotting , Drosophila , Humanos , Inmunohistoquímica , Inmunoprecipitación , Microscopía Electrónica de Transmisión , Fosforilación , Tauopatías/metabolismo , Tauopatías/patología
8.
Cell Rep ; 27(10): 2921-2933.e5, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167138

RESUMEN

Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerborst, maintains NSC quiescence, preventing premature activation of InR/PI3K/Akt signaling. Conversely, an increase in Mob4 and Cka levels promotes NSC reactivation. Mob4 and Cka are essential to recruit PP2A/Mts into a complex with Hippo kinase, resulting in Hippo pathway inhibition. We propose that Mob4/Cka/Mts functions as an intrinsic molecular switch coordinating Hippo and InR/PI3K/Akt pathways and enabling NSC reactivation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Insulina/metabolismo , Transcriptoma/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Proliferación Celular/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Mitosis/genética , Proteínas del Tejido Nervioso/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Análisis de la Célula Individual
9.
Sci Rep ; 6: 34952, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725692

RESUMEN

We removed single identified neurons from living Drosophila embryos to gain insight into the transcriptional control of developing neuronal networks. The microarray analysis of the transcriptome of two sibling neurons revealed seven differentially expressed transcripts between both neurons (threshold: log21.4). One transcript encodes the RNA splicing factor B52. Loss of B52 increases growth of axon branches. B52 function is also required for Choline acetyltransferase (ChAT ) splicing. At the end of embryogenesis, loss of B52 function impedes splicing of ChAT, reduces acetylcholine synthesis, and extends the period of uncoordinated muscle twitches during larval hatching. ChAT regulation by SRSF proteins may be a conserved feature since changes in SRSF5 expression and increased acetylcholine levels in brains of bipolar disease patients have been reported recently.


Asunto(s)
Axones/fisiología , Colina O-Acetiltransferasa/biosíntesis , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Análisis de la Célula Individual , Animales , Colina O-Acetiltransferasa/genética , Drosophila/embriología , Análisis por Micromatrices
10.
Nat Commun ; 7: 10510, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821647

RESUMEN

Stem cells control their mitotic activity to decide whether to proliferate or to stay in quiescence. Drosophila neural stem cells (NSCs) are quiescent at early larval stages, when they are reactivated in response to metabolic changes. Here we report that cell-contact inhibition of growth through the canonical Hippo signalling pathway maintains NSC quiescence. Loss of the core kinases hippo or warts leads to premature nuclear localization of the transcriptional co-activator Yorkie and initiation of growth and proliferation in NSCs. Yorkie is necessary and sufficient for NSC reactivation, growth and proliferation. The Hippo pathway activity is modulated via inter-cellular transmembrane proteins Crumbs and Echinoid that are both expressed in a nutrient-dependent way in niche glial cells and NSCs. Loss of crumbs or echinoid in the niche only is sufficient to reactivate NSCs. Finally, we provide evidence that the Hippo pathway activity discriminates quiescent from non-quiescent NSCs in the Drosophila nervous system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/citología , Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
11.
PLoS One ; 9(2): e88681, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558411

RESUMEN

Different toxicity tests for carbon nanotubes (CNT) have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs) become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.


Asunto(s)
Drosophila melanogaster/embriología , Embrión no Mamífero/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Pruebas de Toxicidad , Animales , Transporte Biológico , Muerte Celular/efectos de los fármacos , Ectodermo/citología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos
12.
Dev Cell ; 23(2): 433-40, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22841498

RESUMEN

Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical ß-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates.


Asunto(s)
Drosophila melanogaster/embriología , Microtúbulos , Mitosis , Animales , Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Activación Enzimática , Microtúbulos/química , Microtúbulos/enzimología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Tubulina (Proteína)/química , Proteínas de Unión al GTP rho/metabolismo
13.
Development ; 133(6): 1001-12, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16467357

RESUMEN

The Drosophila ventral midline has proven to be a useful model for understanding the function of central organizers during neurogenesis. The midline is similar to the vertebrate floor plate, in that it plays an essential role in cell fate determination in the lateral CNS and also, later, in axon pathfinding. Despite the importance of the midline, the specification of midline cell fates is still not well understood. Here, we show that most midline cells are determined not at the precursor cell stage, but as daughter cells. After the precursors divide, a combination of repression by Wingless and activation by Hedgehog induces expression of the proneural gene lethal of scute in the most anterior midline daughter cells of the neighbouring posterior segment. Hedgehog and Lethal of scute activate Engrailed in these anterior cells. Engrailed-positive midline cells develop into ventral unpaired median (VUM) neurons and the median neuroblast (MNB). Engrailed-negative midline cells develop into unpaired median interneurons (UMI), MP1 interneurons and midline glia.


Asunto(s)
Axones/metabolismo , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Letales/genética , Proteínas Hedgehog , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Wnt1
14.
Development ; 129(18): 4205-18, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12183373

RESUMEN

Ephrin/Eph signalling is crucial for axonal pathfinding in vertebrates and invertebrates. We identified the Drosophila ephrin orthologue, Dephrin, and describe for the first time the role of ephrin/Eph signalling in the embryonic central nervous system (CNS). Dephrin is a transmembrane ephrin with a unique N terminus and an ephrinB-like cytoplasmic tail. Dephrin binds and interacts with DEph, the Drosophila Eph-like receptor, and Dephrin and DEph are confined to different neuronal compartments. Loss of Dephrin or DEph causes the abberant exit of interneuronal axons from the CNS, whereas ectopic expression of Dephrin halts axonal growth. We propose that the longitudinal tracts in the Drosophila CNS are moulded by a repulsive outer border of Dephrin expression.


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Interneuronas/fisiología , Proteínas de la Membrana/fisiología , Sistema Nervioso/embriología , Animales , Membrana Celular/fisiología , Proteínas de Drosophila/genética , Embrión no Mamífero/fisiología , Amplificación de Genes , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Morfogénesis , Mosaicismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA