Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 84(1): 17-19, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181757

RESUMEN

Ebner et al.1 discovered a nutrient-dependent molecular feedback circuit that employs mTORC1, lipid kinases, and phosphatases to generate phosphatidylinositol-3-phosphate [PI(3)P] or phosphatidylinositol-4-phosphate [PI(4)P] in a mutually exclusive manner on lysosomes, which respectively convert lysosomes into organelles that support anabolism or catabolism.


Asunto(s)
Crisis de Identidad , Fosfatidilinositoles , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
2.
J Biol Chem ; 298(8): 102187, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760104

RESUMEN

Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.


Asunto(s)
Fibroblastos , Fosfatidilinositol 3-Quinasas , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/genética
3.
Mol Microbiol ; 117(5): 1173-1195, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344242

RESUMEN

Aluminum salts have been successfully utilized as adjuvants to enhance the immunogenicity of vaccine antigens since the 1930s. However, the cellular mechanisms behind the immune adjuvanticity effect of these materials in antigen-presenting cells are poorly understood. In this study, we investigated the uptake and trafficking of aluminum oxy-hydroxide (AlOOH), in RAW 264.7 murine and U-937 human macrophages-like cells. Furthermore, we determined the impact that the adsorption to AlOOH particulates has on the trafficking of a Bordetella pertussis vaccine candidate, the genetically detoxified pertussis toxin (gdPT). Our results indicate that macrophages internalize AlOOH by constitutive macropinocytosis assisted by the filopodial protrusions that capture the adjuvant particles. Moreover, we show that AlOOH has the capacity to nonspecifically adsorb IgG, engaging opsonic phagocytosis, which is a feature that may allow for more effective capture and uptake of adjuvant particles by antigen-presenting cells (APCs) at the site of vaccine administration. We found that AlOOH traffics to endolysosomal compartments that hold degradative properties. Importantly, while we show that gdPT escapes degradative endolysosomes and traffics toward the retrograde pathway, as reported for the wild-type pertussis toxin, the adsorption to AlOOH diverts gdPT to traffic to the adjuvant's lysosome-type compartments, which may be key for MHC-II-driven antigen presentation and activation of CD4+ T cell. Thus, our findings establish a direct link between antigen adsorption to AlOOH and the intracellular trafficking of antigens within antigen-presenting cells and bring to light a new potential mechanism for aluminum adjuvancy. Moreover, the in-vitro single-cell approach described herein provides a general framework and tools for understanding critical attributes of other vaccine formulations.


Asunto(s)
Hidróxido de Aluminio , Aluminio , Adyuvantes Inmunológicos/farmacología , Aluminio/farmacología , Hidróxido de Aluminio/farmacología , Animales , Humanos , Lisosomas , Macrófagos , Ratones , Toxina del Pertussis/genética , Toxina del Pertussis/farmacología , Vacuna contra la Tos Ferina/farmacología
4.
Biochem Soc Trans ; 51(5): 1765-1776, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737061

RESUMEN

Cardiolipin and phosphatidylinositol along with the latter's phosphorylated derivative phosphoinositides, control a wide range of cellular functions from signal transduction, membrane traffic, mitochondrial function, cytoskeletal dynamics, and cell metabolism. An emerging dimension to these lipids is the specificity of their fatty acyl chains that is remarkably distinct from that of other glycerophospholipids. Cardiolipin and phosphatidylinositol undergo acyl remodeling involving the sequential actions of phospholipase A to hydrolyze acyl chains and key acyltransferases that re-acylate with specific acyl groups. LCLAT1 (also known as LYCAT, AGPAT8, LPLAT6, or ALCAT1) is an acyltransferase that contributes to specific acyl profiles for phosphatidylinositol, phosphoinositides, and cardiolipin. As such, perturbations of LCLAT1 lead to alterations in cardiolipin-dependent phenomena such as mitochondrial respiration and dynamics and phosphoinositide-dependent processes such as endocytic membrane traffic and receptor signaling. Here we examine the biochemical and cellular actions of LCLAT1, as well as the contribution of this acyltransferase to the development and specific diseases.


Asunto(s)
Aciltransferasas , Cardiolipinas , Aciltransferasas/metabolismo , Cardiolipinas/metabolismo , Fosfatidilinositoles , Glicerofosfolípidos
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902293

RESUMEN

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Células HEK293 , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Sitios de Unión , Mamíferos/metabolismo
6.
PLoS Biol ; 17(12): e3000535, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31800587

RESUMEN

The mechanisms that govern organelle adaptation and remodelling remain poorly defined. The endo-lysosomal system degrades cargo from various routes, including endocytosis, phagocytosis, and autophagy. For phagocytes, endosomes and lysosomes (endo-lysosomes) are kingpin organelles because they are essential to kill pathogens and process and present antigens. During phagocyte activation, endo-lysosomes undergo a morphological transformation, going from a collection of dozens of globular structures to a tubular network in a process that requires the phosphatidylinositol-3-kinase-AKT-mechanistic target of rapamycin (mTOR) signalling pathway. Here, we show that the endo-lysosomal system undergoes an expansion in volume and holding capacity during phagocyte activation within 2 h of lipopolysaccharides (LPS) stimulation. Endo-lysosomal expansion was paralleled by an increase in lysosomal protein levels, but this was unexpectedly largely independent of the transcription factor EB (TFEB) and transcription factor E3 (TFE3), which are known to scale up lysosome biogenesis. Instead, we demonstrate a hitherto unappreciated mechanism of acute organelle expansion via mTOR Complex 1 (mTORC1)-dependent increase in translation, which appears to be mediated by both S6Ks and 4E-BPs. Moreover, we show that stimulation of RAW 264.7 macrophage cell line with LPS alters translation of a subset but not all of mRNAs encoding endo-lysosomal proteins, thereby suggesting that endo-lysosome expansion is accompanied by functional remodelling. Importantly, mTORC1-dependent increase in translation activity was necessary for efficient and rapid antigen presentation by dendritic cells. Collectively, we identified a previously unknown and functionally relevant mechanism for endo-lysosome expansion that relies on mTORC1-dependent translation to stimulate endo-lysosome biogenesis in response to an infection signal.


Asunto(s)
Presentación de Antígeno/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Fagocitos/metabolismo , Animales , Autofagia , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Femenino , Lipopolisacáridos/farmacología , Lisosomas/efectos de los fármacos , Activación de Macrófagos , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fagocitos/efectos de los fármacos , Fagocitosis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
Traffic ; 20(9): 674-696, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31314175

RESUMEN

Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.


Asunto(s)
Endosomas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Autofagia , Células HEK293 , Células HeLa , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Sistema de Señalización de MAP Quinasas , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo
8.
Circulation ; 141(24): 2004-2025, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32539609

RESUMEN

The 143 low- and middle-income countries (LMICs) of the world constitute 80% of the world's population or roughly 5.86 billion people with much variation in geography, culture, literacy, financial resources, access to health care, insurance penetration, and healthcare regulation. Unfortunately, their burden of cardiovascular disease in general and acute ST-segment-elevation myocardial infarction (STEMI) in particular is increasing at an unprecedented rate. Compounding the problem, outcomes remain suboptimal because of a lack of awareness and a severe paucity of resources. Guideline-based treatment has dramatically improved the outcomes of STEMI in high-income countries. However, no such focused recommendations exist for LMICs, and the unique challenges in LMICs make directly implementing Western guidelines unfeasible. Thus, structured solutions tailored to their individual, local needs, and resources are a vital need. With this in mind, a multicountry collaboration of investigators interested in LMIC STEMI care have tried to create a consensus document that extracts transferable elements from Western guidelines and couples them with local realities gathered from expert experience. It outlines general operating principles for LMICs focused best practices and is intended to create the broad outlines of implementable, resource-appropriate paradigms for management of STEMI in LMICs. Although this document is focused primarily on governments and organizations involved with improvement in STEMI care in LMICs, it also provides some specific targeted information for the frontline clinicians to allow standardized care pathways and improved outcomes.


Asunto(s)
Consenso , Países en Desarrollo/economía , Recursos en Salud/economía , Pobreza/economía , Infarto del Miocardio con Elevación del ST/economía , Infarto del Miocardio con Elevación del ST/epidemiología , Servicios Médicos de Urgencia/economía , Servicios Médicos de Urgencia/normas , Personal de Salud/economía , Personal de Salud/normas , Recursos en Salud/normas , Humanos , Intervención Coronaria Percutánea/economía , Intervención Coronaria Percutánea/normas , Guías de Práctica Clínica como Asunto/normas , Infarto del Miocardio con Elevación del ST/terapia , Terapia Trombolítica/economía , Terapia Trombolítica/normas
9.
Catheter Cardiovasc Interv ; 98(6): 1066-1071, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34347365

RESUMEN

BACKGROUND: Developing countries struggle to diagnose and treat ST-segment elevation myocardial infarction (STEMI) patients in a timely manner, and subsequent outcomes are suboptimal. METHODS: The Latin America Telemedicine Network (LATIN) functioned between 2013 to present in four countries-Brazil, Colombia, Mexico, and Argentina. A Hub and Spoke platform was developed to expand access to >100 million population for STEMI care. Patients were triaged at spokes that included small clinics and primary health care centers in remote South American locations. Three telemedicine command sites provided immediate 24/7 electrocardiogram diagnosis and teleconsultation of the STEMI process at 355 centers in four countries. RESULTS: LATIN Spokes (n = 313) screened up to 30,000 patients per month, and a total of 780,234 patients over the study period. Telemedicine experts diagnosed 8395 (1·1%) with STEMI, of which a total of 3872 (46·1%) were urgently treated at 47 Hubs. A total of 3015 patients (78%) were reperfused with percutaneous coronary intervention. Time-to-telemedicine diagnosis averaged 3·5 min. Average door-to-balloon time improved from 120 to 48 min during the study period and overall STEMI mortality was 5·2%. INTERPRETATION: Telemedicine transcends boundaries and enables access to millions of patients for STEMI care. With this initiative, LATIN has created a template for reducing disparities in STEMI management between developed and developing countries.


Asunto(s)
Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Telemedicina , Electrocardiografía , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/terapia , Resultado del Tratamiento
10.
EMBO Rep ; 20(10): e47911, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31441223

RESUMEN

Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.


Asunto(s)
Autofagia , Resistencia a la Insulina , Sobrecarga de Hierro/patología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Hierro/farmacología , Quelantes del Hierro/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Modelos Biológicos , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo
11.
J Cell Sci ; 131(10)2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29661845

RESUMEN

Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells.


Asunto(s)
Lisosomas/química , Lisosomas/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Iones/metabolismo , Lisosomas/genética , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/metabolismo
12.
Catheter Cardiovasc Interv ; 95(6): 1076-1084, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31489742

RESUMEN

OBJECTIVES: To evaluate the long-term safety and efficacy of the novel combined sirolimus-eluting endothelial progenitor cell capture Combo stent (OrbusNeich, Fort Lauderdale, FL) at 5 years in the REMEDEE (Randomized study to Evaluate the safety and effectiveness of an abluMinal sirolimus coated bio-Engineered stEnt) trial. BACKGROUND: Drug-eluting stents have limited restenosis and reintervention but are complicated by late and very late thrombosis and accelerated neoatherosclerosis. Alternative or adjunctive technologies are needed to address these limitations. METHODS: A total of 183 patients with de novo lesions in native coronary arteries were randomized 2:1 to Combo (n = 124) or Taxus Liberté (n = 59). Primary endpoint was 9 month angiographic in-stent late lumen loss and the secondary endpoint was the occurrence of major adverse events (MACE) through 5-year follow-up. RESULTS: Compared with Taxus, after 5 years the Combo stent was associated with similar rates of MACE (18.3% vs. 16.9%, p = .89), cardiac death (0.8% vs. 5.1%, p = .07), myocardial infarction (4.1% vs. 3.4%, p = .81), target lesion (9.4% vs. 10.2%, p = .78), and target vessel revascularization (14.4% vs. 11.9%, p = .73). No cases of definite stent thrombosis were reported in the Combo group. The follow-up rate at 5 years was 97.7%. CONCLUSION: At 5-year follow-up, the Combo stent remained clinically safe and effective with an overall low rate of MACE comparable to Taxus.


Asunto(s)
Fármacos Cardiovasculares/administración & dosificación , Enfermedad de la Arteria Coronaria/terapia , Stents Liberadores de Fármacos , Células Progenitoras Endoteliales/patología , Intervención Coronaria Percutánea/instrumentación , Sirolimus/administración & dosificación , Anciano , Fármacos Cardiovasculares/efectos adversos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/patología , Reestenosis Coronaria/etiología , Trombosis Coronaria/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/mortalidad , Estudios Prospectivos , Factores de Riesgo , Sirolimus/efectos adversos , Factores de Tiempo , Resultado del Tratamiento
13.
Traffic ; 18(9): 567-579, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28574194

RESUMEN

Compartmentalization of eukaryotic cells into dynamic organelles that exchange material through regulated membrane traffic governs virtually every aspect of cellular physiology including signal transduction, metabolism and transcription. Much has been revealed about the molecular mechanisms that control organelle dynamics and membrane traffic and how these processes are regulated by metabolic, physical and chemical cues. From this emerges the understanding of the integration of specific organellar phenomena within complex, multiscale and nonlinear regulatory networks. In this review, we discuss systematic approaches that revealed remarkable insight into the complexity of these phenomena, including the use of proximity-based proteomics, high-throughput imaging, transcriptomics and computational modeling. We discuss how these methods offer insights to further understand molecular versatility and organelle heterogeneity, phenomena that allow a single organelle population to serve a range of physiological functions. We also detail on how transcriptional circuits drive organelle adaptation, such that organelles may shift their function to better serve distinct differentiation and stress conditions. Thus, organelle dynamics and membrane traffic are functionally heterogeneous and adaptable processes that coordinate with higher-order system behavior to optimize cell function under a range of contexts. Obtaining a comprehensive understanding of organellar phenomena will increasingly require combined use of reductionist and system-based approaches.


Asunto(s)
Células Eucariotas/citología , Orgánulos/fisiología , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Proteómica
14.
Biochem Cell Biol ; 97(4): 387-396, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30403494

RESUMEN

Lysophosphatidic acid (LPA) is a small signaling phospholipid that mediates diverse functions including cell proliferation, migration, and survival by engaging LPA-agonized G-protein coupled receptors. Autophagy is a survival mechanism in response to nutrient depletion or organellar damage that encloses idle or damaged organelles within autophagosomes that are then delivered to lysosomes for degradation. However, the relationship between LPA and autophagy is largely unknown. The purpose of this study is to elucidate whether LPA affects autophagy through the ERK1/2 and (or) the Akt-mTOR signaling pathways. In this study, we investigated the effect of LPA on autophagy-regulating pathways in various prostate-derived cancer cells including PC3, LNCaP, and Du145 cells grown in complete medium and exposed to serum-free medium. Using Western blotting and ELISA, we determined that LPA stimulates the ERK and mTOR pathways in complete and serum-free medium. The mTOR pathway led to phosphorylation of S6K and ULK, which respectively stimulates protein synthesis and arrests autophagy. Consistent with this, LPA exposure suppressed autophagy as measured by LC3 maturation and formation of GFP-LC3 puncta. Altogether, these results suggest that LPA suffices to activate mTORC1 and suppress autophagy in prostate cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Lisofosfolípidos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo , Células Tumorales Cultivadas
15.
Biochem Cell Biol ; 97(1): 21-29, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29791809

RESUMEN

Phagocytosis is an evolutionarily conserved process. In Protozoa, phagocytosis fulfills a feeding mechanism, while in Metazoa, phagocytosis diversified to play multiple organismal roles, including immune defence, tissue homeostasis, and remodeling. Accordingly, phagocytes display a high level of plasticity in their capacity to recognize, engulf, and process targets that differ in composition and morphology. Here, we review how phagocytosis adapts to its multiple roles and discuss in particular the effect of target morphology in phagocytic uptake and phagosome maturation.


Asunto(s)
Fenómenos Fisiológicos Celulares , Fagocitosis/fisiología , Fagosomas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Humanos , Transducción de Señal
16.
Cell Microbiol ; 20(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29349904

RESUMEN

Lysosomes are acidic and hydrolytic organelles responsible for receiving and digesting cargo acquired during endocytosis, phagocytosis, and autophagy. For macrophages and dendritic cells, the lysosome is kingpin, playing a direct role in microbe killing and antigen processing for presentation. Strikingly, the historic view that lysosomes are homogeneous and static organelles is being replaced with a more elegant paradigm, in which lysosomes are heterogeneous, dynamic, and respond to cellular needs. For example, lysosomes are signalling platforms that integrate stress detection and molecular decision hubs such as the mTOR complex 1 and AMPK to modulate cellular activity. These signals can even adjust lysosome activity by modulating transcription factors such as transcription factor EB (TFEB) and TFE3 that govern lysosome gene expression. Here, we review lysosome remodelling and adaptation during macrophage and dendritic cell stimulation. First, we assess the functional outcomes and regulatory mechanisms driving the dramatic restructuring of lysosomes from globular organelles into a tubular network during phagocyte activation. Second, we discuss lysosome adaptation and scaling in macrophages driven by TFEB and TFE3 stimulation in response to phagocytosis and microbe challenges. Collectively, we are beginning to appreciate that lysosomes are dynamic and adapt to serve phagocyte differentiation in response to microbes and immune stress.


Asunto(s)
Lisosomas/fisiología , Fagocitosis/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Células Dendríticas/fisiología , Humanos , Activación de Macrófagos/fisiología , Macrófagos/fisiología
17.
J Immunol ; 199(6): 2096-2105, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28779020

RESUMEN

Neutrophils rapidly arrive at an infection site because of their unparalleled chemotactic ability, after which they unleash numerous attacks on pathogens through degranulation and reactive oxygen species (ROS) production, as well as by phagocytosis, which sequesters pathogens within phagosomes. Phagosomes then fuse with lysosomes and granules to kill the enclosed pathogens. A complex signaling network composed of kinases, GTPases, and lipids, such as phosphoinositides, helps to coordinate all of these processes. There are seven species of phosphoinositides that are interconverted by lipid kinases and phosphatases. PIKfyve is a lipid kinase that generates phosphatidylinositol-3,5-bisphosphate and, directly or indirectly, phosphatidylinositol-5-phosphate [PtdIns(5)P]. PIKfyve inactivation causes massive lysosome swelling, disrupts membrane recycling, and, in macrophages, blocks phagosome maturation. In this study, we explored for the first time, to our knowledge, the role of PIKfyve in human and mouse neutrophils. We show that PIKfyve inhibition in neutrophils does not affect granule morphology or degranulation, but it causes LAMP1+ lysosomes to engorge. Additionally, PIKfyve inactivation blocks phagosome-lysosome fusion in a manner that can be rescued, in part, with Ca2+ ionophores or agonists of TRPML1, a lysosomal Ca2+ channel. Strikingly, PIKfyve is necessary for chemotaxis, ROS production, and stimulation of the Rac GTPases, which control chemotaxis and ROS. This is consistent with observations in nonleukocytes that showed that PIKfyve and PtdIns(5)P control Rac and cell migration. Overall, we demonstrate that PIKfyve has a robust role in neutrophils and propose a model in which PIKfyve modulates phagosome maturation through phosphatidylinositol-3,5-bisphosphate-dependent activation of TRPML1, whereas chemotaxis and ROS are regulated by PtdIns(5)P-dependent activation of Rac.


Asunto(s)
Lisosomas/metabolismo , Neutrófilos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Aminopiridinas/farmacología , Animales , Degranulación de la Célula , Células Cultivadas , Quimiotaxis , GTP Fosfohidrolasas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Hidrazonas , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Fusión de Membrana , Ratones , Ratones Endogámicos , Morfolinas/farmacología , Fagocitosis , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pirimidinas , Especies Reactivas de Oxígeno/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Triazinas/farmacología
18.
Bioessays ; 39(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28977683

RESUMEN

Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/genética , Células Eucariotas/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoinosítido Fosfatasas/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Acilación , Animales , Compartimento Celular , Células Eucariotas/citología , Regulación de la Expresión Génica , Fosfatidilinositoles/química , Fosfatidilinositoles/clasificación , Fosfoinosítido Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
19.
Traffic ; 16(9): 1010-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26010303

RESUMEN

Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.


Asunto(s)
Fagosomas/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Fagocitosis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Canales de Potencial de Receptor Transitorio/genética
20.
Traffic ; 15(10): 1143-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041080

RESUMEN

Macrophages eliminate pathogens and cell debris through phagocytosis, a process by which particulate matter is engulfed and sequestered into a phagosome. Nascent phagosomes are innocuous organelles resembling the plasma membrane. However, through a maturation process, phagosomes are quickly remodeled by fusion with endosomes and lysosomes to form the phagolysosome. Phagolysosomes are highly acidic and degradative leading to particle decomposition. Phagosome maturation is intimately dependent on the endosomal pathway, during which diverse cargoes are sorted for recycling to the plasma membrane or for degradation in lysosomes. Not surprisingly, various regulators of the endosomal pathway are also required for phagosome maturation, including phosphatidylinositol-3-phosphate, an early endosomal regulator. However, phosphatidylinositol-3-phosphate can be modified by the lipid kinase PIKfyve into phosphatidylinositol-3,5-bisphosphate, which controls late endosome/lysosome functions. The role of phosphatidylinositol-3,5-bisphosphate in macrophages and phagosome maturation remains basically unexplored. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that inhibition of PIKfyve hindered certain steps of phagosome maturation. In particular, PIKfyve antagonists delayed removal of phosphatidylinositol-3-phosphate and reduced acquisition of LAMP1 and cathepsin D, both common lysosomal proteins. Consistent with this, the degradative capacity of phagosomes was reduced but phagosomes appeared to still acidify. We also showed that trafficking to lysosomes and their degradative capacity was reduced by PIKfyve inhibition. Overall, we provide evidence that PIKfyve, likely through phosphatidylinositol-3,5-bisphosphate synthesis, plays a significant role in endolysosomal and phagosome maturation in macrophages.


Asunto(s)
Endosomas/metabolismo , Macrófagos/metabolismo , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Aminopiridinas/farmacología , Animales , Catepsina D/metabolismo , Línea Celular , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Fagocitosis , Fosfatos de Fosfatidilinositol/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transporte de Proteínas , Receptores de IgG/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA