Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 239(Pt 2): 117361, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37844685

RESUMEN

Welding fumes are associated with various diseases. Increased air levels of metals were reported during welding. However, few multielement biomonitoring studies were conducted to assess the actual dose of metal components absorbed in apprentice welders in a learning environment. This research aimed to establish the nature and level of exposure to welding fumes and their metallic components in apprentice welders performing 'Shielded Metal Arc Welding' (SMAW), based on multi-element and multi-matrix analyses. A total of 86 apprentice welders were recruited in three different schools in Montreal, Québec, Canada. Twenty-one elements were measured in urine, hair, fingernail, and toenail samples collected at the beginning of the program and at the end of SMAW practical training. Concentrations of welding fumes and 12 metals were also determined in personal respirable air samples collected over a typical workday in a subgroup of 19 apprentices. Levels of manganese (Mn), iron (Fe) and nickel (Ni) in urine and Mn in hair were higher in samples taken at the end of the SMAW module compared to the beginning of training, while there was no significant difference for the other elements or for nail concentrations. Geometric mean concentrations [5th-95th percentiles] reached 0.31 [0.032-2.84], 9.4 [3.1-51] and 0.87 [0.35-3.1] µg/g creat. in post-shift urine, respectively, for Mn, Fe and Ni, and 0.37 [0.46-6.4] µg Mn/g hair at the end of SWAW. Median concentrations [5th-95th percentiles] were 29 [4.6-1200], 120 [27-3100] and 0.31 [

Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Soldadura , Humanos , Uñas/química , Contaminantes Ocupacionales del Aire/análisis , Monitoreo Biológico , Obreros Metalúrgicos , Metales/análisis , Exposición Profesional/análisis , Manganeso/análisis , Níquel , Gases
2.
Arch Toxicol ; 97(3): 663-670, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36436015

RESUMEN

Silver (Ag) and its compounds are priority contaminants, for which toxicological effects are well documented, but their toxicokinetics are not fully documented for a proper risk assessment. While the toxicokinetics of insoluble Ag nanoparticles (Ag NPs) was recently documented, there is a lack of data on the kinetic behavior of the soluble form, such as one of the mostly used silver nitrate (AgNO3) form. This study aimed to better document the toxicokinetics of Ag element following inhalation of soluble AgNO3 for comparison with a previous study on the kinetics of inhaled Ag NPs using a similar experimental design. We exposed male Sprague-Dawley rats to AgNO3 during 6 continuous hours (typical of a daily worker exposure) to determine the kinetic time courses of Ag element in blood, tissues, and excreta over a 14-day period post-exposure. Only a small fraction of Ag was found in lungs following the onset of the 6-h inhalation of AgNO3 (on average (± SD) 0.3 ± 0.1% at the end of the 6-h inhalation). Blood profiles of Ag element showed peak levels right after the end of the 6-h inhalation period and levels decreased rapidly thereafter. Toxicokinetic parameter values calculated from the average blood-concentration profiles showed a mean residence time (MRT) of 135 h and mean half-life (t1/2) of 94 h, with AUC of 2.5 mg/L × h and AUMC of 338 mg/L × h2. In terms of percent of inhaled dose, highest levels of Ag in extrapulmonary organs were found in liver, which represented on average (± SD) 1.6 ± 0.6% of calculated inhaled dose followed by the kidney with 0.1 ± 0.08%. Peak levels in the GI tract (including contents) were found at the end of the 6-h inhalation and represented 20 ± 15.6% of the inhaled dose. The dominant excretion route of Ag was through feces. The time course of Ag element in the GI tract and feces following AgNO3 inhalation is also compatible with an intestinal reabsorption of Ag. When compared to results of Ag NPs of a prior study with the same design, this study showed differences in the kinetics of soluble AgNO3 compared to insoluble Ag NPs, with higher levels in blood, GI tract, and extrapulmonary tissues but lower levels in lungs following AgNO3 exposure.


Asunto(s)
Nanopartículas del Metal , Nitrato de Plata , Ratas , Masculino , Animales , Nitrato de Plata/farmacocinética , Toxicocinética , Ratas Sprague-Dawley , Plata
3.
Arch Toxicol ; 97(12): 3061-3074, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37679595

RESUMEN

We conducted a rat exposure study to assess the impacts of dose and co-exposure with other rare earth elements (REEs) on the toxicokinetics of praseodymium (Pr) and cerium (Ce). We first determined the kinetic profiles of elemental Pr and Ce in blood, urine and feces along with tissue levels at sacrifice on the seventh day following intravenous injection of PrCl3 or CeCl3 at 0.3 or 1 mg/kg bw (of the chloride salts) in adult male Sprague-Dawley rats (n = 5 per group). In blood, Pr and Ce half-lives for the initial phase (t1/2α) increased with increasing doses, while their half-lives for the terminal phase (t1/2ß) were similar at both doses. In urine, a minor excretion route, no significant effect of the dose on the cumulative excretion was apparent. In feces, a major excretion route, the fraction of the Pr dose recovered was significantly lower at the 1 mg/kg bw dose compared to the 0.3 mg/kg bw dose, while no significant dose effect was apparent for Ce. In the liver and spleen, which are the main sites of REEs accumulation, there was a significant effect of the dose only for Ce retention in the spleen (i.e., increased retention of Ce in spleen at higher dose). Results were compared with those of a previous toxicokinetic study with a similar design but an exposure to a quaternary mixture of CeCl3, PrCl3, NdCl3 and YCl3, each administered at 0.3 mg/kg bw or 1 mg/kg bw. A mixture effect was apparent for the initial elimination phase (t1/2α) of Pr and Ce from blood and for the fecal excretion of Ce at the 1 mg/kg bw. In urine and liver, there was no evident overall mixture effect; in the spleen, there was a higher retention of Pr and Ce in rats exposed to the mixture at the 0.3 mg/kg bw, but not at the 1 mg/kg bw dose. Overall, this study showed that the dose and mixture exposure are two important factors to consider as determinants of the toxicokinetics of REEs.


Asunto(s)
Cerio , Metales de Tierras Raras , Masculino , Ratas , Animales , Cerio/toxicidad , Cerio/orina , Praseodimio , Ratas Sprague-Dawley , Cloruros , Sales (Química) , Toxicocinética
4.
Environ Res ; 203: 111800, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364863

RESUMEN

Concentrations of total mercury were measured in blood and hair samples collected as part of a human biomonitoring project conducted in First Nations communities of the Mackenzie Valley, Northwest Territories, Canada. Hair (n = 443) and blood (n = 276) samples were obtained from six communities in the Dehcho region and three communities in the Sahtú region of the Mackenzie Valley. The aim of this paper was to calculate hair to blood mercury ratios (for matched samples) and determine if: 1) ratios differed significantly between the two regions; 2) ratios differed from the 250:1 ratio proposed by the WHO; and, 3) point estimates of hair to blood mercury ratios could be used to estimate blood mercury concentrations. In addition, this paper aims to determine if there were seasonal patterns in hair mercury concentrations in these regions and if so, if patterns were related to among-season variability in fish consumption. The majority of mercury levels in hair and blood were below relevant health-based guidance values. The geometric mean hair (most recent segment) to blood mercury ratio (stratified by region) was 619:1 for the Dehcho region and 1220:1 for the Sahtú region. Mean log-transformed hair to blood mercury ratios were statistically significantly different between the two regions. Hair to blood ratios calculated in this study were far higher (2-5 times higher) than those typically reported in the literature and there was a large amount of inter-individual variation in calculated ratios (range: 114:1 to 4290:1). Using the 250:1 ratio derived by the World Health Organisation to estimate blood mercury concentrations from hair mercury concentrations would substantially over-estimate blood mercury concentrations in the studied regions. However, geometric mean site-specific hair to blood mercury ratios can provide estimates of measures of central tendency for blood mercury concentrations from hair mercury concentrations at a population level. Mercury concentrations were determined in segments of long hair samples to examine exposure of participants to mercury over the past year. Hair segments were assigned to six time periods and the highest hair mercury concentrations were generally observed in hair segments that aligned with September/October and November/December, whereas the lowest hair mercury concentrations were aligned with March/April and May/June. Mean log-transformed hair mercury concentrations were statistically significantly different between time periods. Between time periods (e.g., September/October vs. March/April), the geometric mean mercury concentration in hair differed by up to 0.22 µg/g, and the upper margins of mercury exposure (e.g., 95th percentile of hair mercury) varied by up to 0.86 µg/g. Results from self-reported fish consumption frequency questionnaires (subset of participants; n = 170) showed total fish intake peaked in late summer, decreased during the winter, and then increased during the spring. Visual assessment of results indicated that mean hair mercury concentrations followed this same seasonal pattern. Results from mixed effects models, however, indicated that variability in hair mercury concentrations among time periods was not best explained by total fish consumption frequency. Instead, seasonal trends in hair mercury concentrations may be more related to the consumption of specific fish species (rather than total wild-harvested fish in general). Future work should examine whether seasonal changes in the consumption of specific fish species are associated with seasonal changes in hair mercury concentrations.


Asunto(s)
Mercurio , Animales , Canadá , Monitoreo del Ambiente , Peces , Humanos , Mercurio/análisis , Territorios del Noroeste , Estudios Retrospectivos
5.
Environ Res ; 214(Pt 3): 113982, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952733

RESUMEN

This study is the first attempt to assess exposure to metals and trace elements in subgroups of the Lebanese population using a multi-matrix biomonitoring approach. Concentrations of 11 metals and trace elements (aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), selenium (Se), uranium (U), zinc (Zn)) were measured in urine, hair and toenails. Biological levels were compared according to age, sex, smoking status, socioeconomic status, geographical area and drinking water source. While most urinary and toenail concentrations of metals and trace elements were not different between males and females, measured concentrations of several elements in hair were higher in females compared to males. Urinary concentrations of some metals (Al, Cu, Se and Zn) were higher in children compared to teenagers and adults. Hair and toenail concentrations of several elements (As, Cd, Pb, Mn, Se in hair and toenails plus Al, Fe in toenails) were also significantly higher in children compared to teenagers and/or adults. Smoking status had no influence on metal and trace element concentrations. Levels of Cd, Pb and Mn were also higher in samples from subgroups with lower economic status (Cd and Pb in the three matrices and Mn in hair and toenails). Very few correlations were identified between sources of drinking water and urine, hair, and toenail concentrations of metals and trace elements. However, a correlation was observed between hair and toenails levels of As, Cd and Pb. Overall, results highlight that a special attention should be given to metal and trace element exposure in this population (including Pb, As, Cd, Mn, and Se). It could be relevant to scale up this kind of investigation with a large human biomonitoring initiative in the Lebanese population in order to generalize results, and assess trends over time.


Asunto(s)
Arsénico , Agua Potable , Selenio , Oligoelementos , Adolescente , Adulto , Arsénico/análisis , Monitoreo Biológico , Cadmio/análisis , Niño , Ingestión de Líquidos , Femenino , Humanos , Plomo , Masculino , Manganeso , Oligoelementos/análisis
6.
Arch Toxicol ; 96(2): 487-498, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787690

RESUMEN

Silver nanoparticles (Ag NPs) are priority substances closely monitored by health and safety agencies. Despite their extensive use, some aspects of their toxicokinetics remain to be documented, in particular following inhalation, the predominant route of exposure in the workplace. A same experimental protocol and exposure conditions were reproduced two times (experiments E1 and E2) to document the kinetic time courses of inhaled Ag NPs. Rats were exposed nose-only to 20 nm Ag NPs during 6 h at a target concentration of 15 mg/m3 (E1: 218,341 ± 85,512 particles/cm3; E2, 154,099 ± 5728 particles/cm3). The generated aerosol showed a uniform size distribution of nanoparticle agglomerates with a geometric mean diameter ± SD of 79.1 ± 1.88 nm in E1 and 92.47 ± 2.19 nm in E2. The time courses of elemental silver in the lungs, blood, tissues and excreta were determined over 14 days following the onset of inhalation. Excretion profiles revealed that feces were the dominant excretion route and represented on average (± SD) 5.1 ± 3.4% (E1) and 3.3 ± 2.5% (E2) of the total inhaled exposure dose. The pulmonary kinetic profile was similar in E1 and E2; the highest percentages of the inhaled dose were observed between the end of the 6-h inhalation up to 6-h following the end of exposure, and reached 1.9 ± 1.2% in E1 and 2.5 ± 1.6% in E2. Ag elements found in the GIT followed the trend observed in lungs, with a peak observed at the end of the 6-h inhalation exposure and representing 6.4 ± 4.9% of inhaled dose, confirming a certain ingestion of Ag NPs from the upper respiratory tract. Analysis of the temporal profile of Ag elements in the liver showed two distinct patterns: (i) progressive increase in values with peak at the end of the 6-h inhalation period followed by a progressive decrease; (ii) second increase in values starting at 72 h post-exposure with maximum levels at 168-h followed by a progressive decrease. The temporal profiles of Ag elements in lymphatic nodes, olfactory bulbs, kidneys and spleen also followed a pattern similar to that of the liver. However, concentrations in blood and extrapulmonary organs were much lower than lung concentrations. Overall, results show that only a small percentage of the inhaled dose reached the lungs-most of the dose likely remained in the upper respiratory tract. The kinetic time courses in the gastrointestinal tract and liver showed that part of the inhaled Ag NPs was ingested; lung, blood and extrapulmonary organ profiles also suggest that a small fraction of inhaled Ag NPs progressively reached the systemic circulation by a direct translocation from the respiratory tract.


Asunto(s)
Exposición por Inhalación , Pulmón/metabolismo , Nanopartículas del Metal/administración & dosificación , Plata/farmacocinética , Aerosoles , Animales , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Plata/administración & dosificación , Distribución Tisular , Toxicocinética
7.
Arch Toxicol ; 96(9): 2465-2486, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35567602

RESUMEN

There are limited literature data on the impact of coexposure on the toxicokinetics of pesticides in agricultural workers. Using the largely employed pyrethroid lambda-cyhalothrin (LCT) and fungicide captan as sentinel pesticides, we compared individual temporal profiles of biomarkers of exposure to LCT in strawberry field workers following an application episode of LCT alone or in coexposure with captan. Participants provided all urine voided over a 3-day period after an application of a pesticide formulation containing LCT alone (E1) or LCT mixed with captan (E2), and in some cases following re-entry in treated field (E3). Pyrethroid metabolites were measured in all urine samples, in particular 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP), 3-phenoxybenzoic acid (3-PBA), and 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There were no obvious differences in individual concentration-time profiles and cumulative excretion of metabolites (CFMP, 3-PBA, 4-OH3BPA) after exposure to LCT alone or in combination with captan. For most workers and exposure scenarios, CFMP was the main metabolite excreted, but time courses of CFMP in urine did not always follow that of 3-PBA and 4-OH3BPA. Given that the latter metabolites are common to other pyrethroids, this suggests that some workers were coexposed to pyrethroids other than LCT. For several workers and exposure scenarios E1 and E2, values of CFMP increased in the hours following spraying. However, for many pesticide operators, other peaks of CFMP were observed at later times, indicating that tasks other than spraying of LCT-containing formulations contributed to this increased exposure. These tasks were mainly handling/cleaning of equipment used for spraying (tractor or sprayer) or work/inspection in LCT-treated field according to questionnaire responses. Overall, this study provided novel excretion time course data for LCT metabolites valuable for interpretation of biomonitoring data in workers, but also showed that coexposure was not a major determinant of variability in exposure biomarker levels. Our analysis also pointed out the importance of measuring specific metabolites.


Asunto(s)
Fragaria , Insecticidas , Plaguicidas , Piretrinas , Biomarcadores/orina , Captano/toxicidad , Monitoreo del Ambiente , Agricultores , Humanos , Insecticidas/farmacocinética , Insecticidas/toxicidad , Nitrilos , Plaguicidas/toxicidad , Piretrinas/toxicidad
8.
Toxicol Appl Pharmacol ; 386: 114845, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786412

RESUMEN

Previous data obtained in piglets suggested that despite structural analogy with Bisphenol A (BPA), Bisphenol S (BPS) elimination may proceed more slowly, resulting in a much higher systemic exposure to unconjugated BPS than to BPA. Interspecies allometric scaling was applied to predict the toxicokinetic (TK) parameters of BPS, namely plasma clearance in humans from values obtained in animals, and thus contribute to assessment of the human internal exposure to BPS. Allometric scaling was performed using mean BPS plasma clearance values measured in rats after intravenous administration of 5 mg BPS /kg body weight (BW) and those previously obtained in piglets and sheep using identical IV BPS dosing and analytical procedures. The BPS plasma clearance, evaluated at 0.92 L/kg.h in rats, was proportional to species body weight, enabling the prediction of human BPS plasma clearance by extrapolating to a BW of 70 kg. The estimated BPS plasma clearance in humans was thus 0.92 L/min (0.79 L/kg.h), i.e. about two times lower than the previously estimated BPA clearance (1.79 L/min). By increasing systemic exposure to the active moiety of an environmental estrogenic chemical, this less efficient clearance of BPS in humans, as compared with BPA, might worsen the harmful consequences of replacing BPA by BPS.


Asunto(s)
Fenoles/farmacocinética , Sulfonas/farmacocinética , Animales , Femenino , Humanos , Tasa de Depuración Metabólica , Fenoles/sangre , Fenoles/toxicidad , Ratas , Ratas Wistar , Ovinos , Sulfonas/sangre , Sulfonas/toxicidad , Porcinos
9.
Environ Res ; 190: 110008, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32763278

RESUMEN

A human biomonitoring project investigating environmental exposures to metals from hair, blood and urine samples was implemented in the Northwest Territories, Canada, between January 2016 and March 2018. This study reports the metal biomarker levels from nine Dene communities located in the Dehcho and Sahtú regions to identify contaminants of interest. Levels of metals in the urine (n = 198), blood (n = 276) and hair (n = 443) samples were generally similar to those seen in other biomonitoring studies in Canada, but lead levels in blood (GM = 16 µg/L; 95th percentile = 71 µg/L) and urine (GM = 0.59 µg/L, 0.69 µg/g of creatinine; 95th percentile = 4.2 µg/L, 4.0 µg/g of creatinine) were higher than those observed in the Canadian Health Measure Survey (CHMS, cycles 2 and 5). Hair mercury (but not blood mercury) appeared higher than observed in participants from the CHMS cycle 5. The vast majority of participants had biomarker levels below the biomonitoring guidance values established for mercury and lead. Based on a comparative analysis of biomarker statistics relative to a nationally-representative survey, metals and essential trace elements of particular interest for follow-up research include: lead, manganese, mercury, and selenium. This project provided baseline biomarker levels in participating regions, which is essential to track changes in the future, and identify the contaminants to prioritize for further investigation of exposure determinants.


Asunto(s)
Contaminantes Ambientales , Plomo , Regiones Árticas , Monitoreo Biológico , Canadá , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Humanos , Territorios del Noroeste
10.
Arch Toxicol ; 94(9): 3045-3058, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577784

RESUMEN

This study aimed at gaining more insights into the impact of pesticide coexposure on the toxicokinetics of biomarkers of exposure. This was done by conducting an in vivo experimental case-study with binary mixtures of lambda-cyhalothrin (LCT) and captan and by assessing its impact on the kinetic profiles of LCT biomarkers of exposure. Groups of male Sprague-Dawley rats were exposed orally by gavage to LCT alone (2.5 or 12.5 mg/kg bw) or to a binary mixture of LCT and captan (2.5/2.5 or 2.5/12.5 or 12.5/12.5 mg/kg bw). In order to establish the temporal profiles of the main metabolites of LCT, serial blood samples were taken, and excreta (urine and feces) were collected at predetermined intervals up to 48 h post-dosing. Major LCT metabolites were quantified in these matrices: 3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic (CFMP), 3-phenoxybenzoic acid (3-PBA), 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There was no clear effect of coexposure at the low LCT dose on the kinetics of CFMP and 3-PBA metabolites, based on the combined assessment of temporal profiles of these metabolites in plasma, urine and feces; however, plasma levels of 3-PBA were diminished in the coexposed high-dose groups. A significant effect of coexposure on the urinary excretion of 4-OH3PBA was also observed while fecal excretion was not affected. The temporal profiles of metabolites in plasma and in excreta were further influenced by the LCT dose. In addition, the study revealed kinetic differences between metabolites with a faster elimination of 3-PBA and 4-OH3BPA compared to CFMP. These results suggest that the pyrethroid metabolites CFMP and 3-PBA, mostly measured in biomonitoring studies, remain useful as biomarkers of exposure in mixtures, when pesticide exposure levels are below the reference values. However, the trend of coexposure effect observed in the benzyl metabolite pathway (in particular 4-OH3BPA) prompts further investigation.


Asunto(s)
Captano/toxicidad , Nitrilos/toxicidad , Plaguicidas/toxicidad , Piretrinas/toxicidad , Animales , Benzoatos , Biomarcadores , Insecticidas , Masculino , Ratas , Ratas Sprague-Dawley , Toxicocinética
11.
J Neuroinflammation ; 15(1): 159, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29793499

RESUMEN

BACKGROUND: Pyrethroids, such as bifenthrin (BF), are among the most widely used class of insecticides that pose serious risks to human and wildlife health. Pyrethroids are proposed to affect astrocytic functions and to cause neuron injury in the central nervous system (CNS). Microglia are key cells involved in innate immune responses in the CNS, and microglia activation has been linked to inflammation and neurotoxicity. However, little information is known about the effects of BF-induced toxicity in primary microglial cells as well as in organotypic hippocampal slice cultures (OHSCs). METHODS: Oxidative stress and inflammatory responses induced by BF were evaluated in primary microglial cells and OHSCs incubated with different concentrations of BF (1-20 µM) for 4 and 24 h. mRNA and protein synthesis of cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), nuclear erythroid-2 like factor-2 (Nrf-2), and microsomal prostaglandin synthase-1 (mPGES-1) was also studied by qPCR and Western blot. Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Neurotoxicity in OHSCs was analyzed by propidium iodide (PI) staining and confocal microscopy. RESULTS: Exposure of microglial cells to BF for 24 h resulted in a dose-dependent reduction in the number of viable cells. At sub-cytotoxic concentrations, BF increased reactive oxygen species (ROS), TNF-alpha synthesis, and prostaglandin E2 (PGE2) production, at both 4- and 24-h time points, respectively. Furthermore, BF incubation decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and increased lipid peroxidation, protein oxidation, and H2O2 formation. In addition, BF significantly induced protein synthesis and mRNA expression of oxidative and inflammatory mediators after 4 and 24 h, including Nrf-2, COX-2, mPGES-1, and nuclear factor kappaB (NF-kappaB). A 24-h exposure of OHSCs to BF also increased neuronal death compared to untreated controls. Furthermore, depletion of microglia from OHSCs potently enhanced neuronal death induced by BF. CONCLUSIONS: Overall, BF exhibited cytotoxic effects in primary microglial cells, accompanied by the induction of various inflammatory and oxidative stress markers including the Nrf-2/COX-2/mPGES-1/NF-kappaB pathways. Moreover, the study provided evidence that BF induced neuronal death in OHSCs and suggests that microglia exert a protective function against BF toxicity.


Asunto(s)
Citocinas , Hipocampo , Insecticidas , Microglía , Piretrinas , Especies Reactivas de Oxígeno , Animales , Ratas , Animales Recién Nacidos , Catalasa/metabolismo , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Glutatión Peroxidasa/metabolismo , Hipocampo/citología , Técnicas In Vitro , Insecticidas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Microglía/efectos de los fármacos , Técnicas de Cultivo de Órganos , Piretrinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
12.
Toxicol Appl Pharmacol ; 351: 21-31, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29753004

RESUMEN

The French Nutrition and Health Survey (ENNS) reported higher biomarker levels of exposure to pyrethroids than those observed in North American and German biomonitoring studies. The authors therefore investigated aggregate exposure to permethrin as an initial case study because this compound is one of the most widely-used pyrethroid insecticides. We assessed several contamination sources-such as indoor and outdoor air, settled dust and diet-and several pathways, including oral, inhalation and dermal routes. We used permethrin exposure level estimations (computed from ENNS data) and a PBPK model calibrated with human kinetic data (from 6 individuals) to simulate an internal dose of cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- or trans-DCCA) in a population of 219 individuals. The urinary concentrations of cis- and trans -DCCA predicted by the PBPK model according to three permethrin exposure scenarios ("lower", "intermediate", and "upper"), were compared to the urinary levels measured in the ENNS study. The ENNS levels were between the levels simulated according to permethrin exposure scenarios "lower" and "intermediate". The "upper" scenario led to an overestimation of the predicted urinary concentration levels of cis - and trans -DCCA compared to those measured in the ENNS study. The most realistic scenario was the "lower" one (permethrin concentration of left-censored data considered as 0). Using PBPK modeling, we estimated the contribution of each pathway and source to the internal dose. The main route of permethrin exposure was oral (98%), diet being the major source (87%) followed by dust (11%) then the dermal route (1.5%) and finally inhalation (0.5%).


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente/métodos , Insecticidas/efectos adversos , Vigilancia de la Población , Piretrinas/efectos adversos , Adolescente , Adulto , Anciano , Estudios Transversales , Dieta/efectos adversos , Polvo/análisis , Femenino , Francia/epidemiología , Humanos , Insecticidas/administración & dosificación , Masculino , Persona de Mediana Edad , Vigilancia de la Población/métodos , Piretrinas/administración & dosificación , Adulto Joven
13.
Int Arch Occup Environ Health ; 89(5): 767-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26831869

RESUMEN

PURPOSE: Cypermethrin is a pyrethroid pesticide widely used in agriculture. Exposure can be assessed through biomonitoring. However, interpretation of results requires a proper knowledge of the toxicokinetics of the exposure biomarkers of interest. This study aimed at characterizing typical urinary time courses of biomarkers of exposure to cypermethrin in farm workers in Quebec following an exposure episode, distribution of values and variability, and predictors of elevated excretion levels. METHODS: Workers provided total voids before seasonal spraying and during three consecutive days following an exposure period. Personal factors, professional tasks, and exposure conditions were documented by questionnaire. The urinary metabolites cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids (DCCA) and 3-phenoxybenzoic acid (3-PBA) were quantified. RESULTS: Time courses showed significant variations of metabolite levels through time, although a clear profile typical of an acute exposure episode was not observed for several workers. However, maximum urinary levels in most exposed workers were generally reached 18-32 h following the onset of an exposure episode. Group comparison showed that applicators had higher excretions than workers performing inspection, harvest, or weeding. CONCLUSIONS: Time-dependent variations in excretions indicate the importance of serial urinary collections for a proper interpretation of a worker exposure pattern. In the context of group comparison, the alternative based on observed time courses and peak levels in most exposed workers would be the collection of urine samples prior to an exposure episode, at the end-of-shift after exposure onset and following morning void. When spot samples can only be collected for population exposure assessment, Monte Carlo simulations showed that iterative random selection of single urinary values from individual time courses observed in this study to predict distribution of values in the group of workers converged to similar central tendencies.


Asunto(s)
Agricultores , Insecticidas/orina , Exposición Profesional/análisis , Piretrinas/orina , Factores de Tiempo , Adulto , Benzoatos/orina , Biomarcadores/orina , Monitoreo del Ambiente/métodos , Femenino , Humanos , Insecticidas/toxicidad , Masculino , Persona de Mediana Edad , Exposición Profesional/efectos adversos , Piretrinas/toxicidad , Quebec , Toxicocinética
14.
J Toxicol Environ Health A ; 78(12): 725-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26090558

RESUMEN

Benzo[a]pyrene (BaP) is a human carcinogen, but there are no validated biomarkers of exposure and the relationship of carcinogenesis with early biological alterations is not fully documented. This study aimed at better documenting the toxicokinetics of diolBaP and hydroxyBaP metabolites as potential biomarkers of exposure to BaP in relation to DNA adduct formation and gene expression. Rats were intravenously (iv) injected with 40 µmol/kg BaP. BaP and several metabolites were measured in blood, tissues, and excreta collected at frequent intervals over 72 h posttreatment. BaP diol epoxide (BaPDE)-DNA adduct formation and gene expression were assessed in lungs. 3-HydroxyBaP (3-OHBaP) and 4,5-diolBaP were the most abundant measured metabolites, and differences in time courses were apparent between the two metabolites. Over the 0-72 h period, mean proportions of BaP dose recovered in urine as 3-OHBaP and 4,5-diolBaP (±SD) were 0.017 ± 0.003% and 0.1 ± 0.03%. Corresponding values in feces were 1.5 ± 0.5% and 0.42 ± 0.052%. BaPDE-DNA adducts were significantly increased in lungs and a correlation was observed with urinary 3-OHBaP and 4,5-diolBaP. Analysis of gene expression showed a modulation of expression of metabolic genes (Cyp1a1, Cyp1b1, Nqo1, Ahr) and oxidative stress and repair genes (Nrf2, Rad51). However, BaPDE adducts formation did not exhibit any significant correlation with expression of genes, except a negative correlation with Rad51 expression. Similarly, there was no significant correlation between urinary excretion of OHBaP and diolBaP and expression of genes, except for urinary 7-OHBaP excretion, which was negatively correlated with Rad51 expression. Results indicate that concomitant measurements of diolBaP and OHBaP may serve to better assess the extent of exposure as compared to single metabolite measurements, given kinetic differences between metabolites. Further, although some urinary metabolites were correlated with BaPDE adducts, links with gene expression need to be further investigated.


Asunto(s)
Benzo(a)pireno/farmacocinética , Benzo(a)pireno/toxicidad , Aductos de ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Mutágenos/toxicidad , Animales , Benzo(a)pireno/análisis , Biomarcadores/análisis , Biotransformación , Aductos de ADN/análisis , Heces/química , Hidroxilación , Masculino , Ratas , Ratas Sprague-Dawley
15.
J Toxicol Environ Health A ; 78(3): 166-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25506633

RESUMEN

The effects of benzo[a]pyrene (BaP) administration on biomarkers of exposure and early effects were studied in male Sprague-Dawley rats intravenously injected with doses of 0.4, 4, 10, or 40 µmol BaP/kg . Blood, tissues, and excreta were collected 8 and 24 h posttreatment. BaP and several of its metabolites were simultaneously measured in blood, tissues and excreta by ultra-high-performance liquid chromatography (UHPLC)/fluorescence. DNA adducts of BaP diol epoxide (BaPDE) in lungs were quantified using an ultrasensitive immunoassay with chemiluminescence detection. Expression of selected genes in lungs of treated rats (lung RNA) compared to control rats was also assessed by quantitative real-time polymerase chain reaction. There was a dose-dependent increase in blood, tissue, and excreted levels of BaP metabolites. At 8 and 24 h postinjection, BaP and hydroxyBaP were found in higher concentrations in blood and tissues compared to other analytes. However, diolBaP were excreted in greater amounts in urine and apparently more rapidly than hydroxyBaP. Mean percentages (± SD) of injected dose excreted in urine as 4,5-diolBaP during the 0-8 h and 0-24 h period posttreatment were 0.16 ± 0.027% and 0.14 ± 0.083%, respectively. Corresponding values for 3-OHBaP were 0.0045 ± 0.0009% and 0.026 ± 0.014%. BaP-diones were not detectable in blood, tissues, and excreta; 7,8-diolBaP and BaPtetrol were found to be minor metabolites. There was also a dose-dependent increase in DNA adduct formation in lung. Analysis of gene expression further showed a modulation of Cyp1a1, Cyp1b1, Nqo1, Nrf2, Fos, and Ahr expression at 10- and 40-µmol/kg doses, but not at the lower doses. This study provided a better assessment of the influence of absorbed BaP doses on biological levels of diolBaP and OHBaP exposure biomarkers and association of the latter with early biological alterations, such as DNA adducts and gene expression.


Asunto(s)
Benzo(a)pireno/toxicidad , Aductos de ADN/metabolismo , Contaminantes Ambientales/toxicidad , Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Animales , Benzo(a)pireno/metabolismo , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/metabolismo , Marcadores Genéticos , Inyecciones Intravenosas , Pulmón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Ann Occup Hyg ; 59(9): 1152-67, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26324827

RESUMEN

Permethrin is a synthetic pyrethroid insecticide widely used in agriculture. Farm workers are thus regularly exposed during spraying season. To help interpret routine biomonitoring results, a proper knowledge of the time courses of biomarkers of exposure is necessary. The kinetics of biomarkers of exposure to permethrin has recently been documented in volunteers exposed to permethrin under controlled conditions but there is a lack of detailed time profiles following real exposure conditions. This study aimed at obtaining data on the excretion time courses of permethrin metabolites in agricultural workers following typical exposure conditions in the field. Twelve workers exposed to permethrin were recruited from a corn production farm in the Montérégie, Quebec, Canada. They provided all their urine voided over a period of 3 days following the onset of a spraying episode of permethrin or work in a treated area. Three major metabolites of permethrin, trans- and cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-l-carboxylic acid metabolites (trans-DCCA, cis-DCCA), and 3-phenoxybenzoic acid (3-PBA), were analyzed. For the applicator, a progressive rise in excretion values was observed with a single peak being reached 29h following the onset of the 3.5h exposure and ensuing elimination with a half-life of 6.4h for trans-DCCA and 8.7h for 3-PBA. In the other workers (supervisor and corn pickers), excretion profiles were generally more compatible with multiple entries in the treated area during the 3-day sampling period and rapid elimination between exposure episodes. In general, 3-PBA was found in slightly higher levels than trans-DCCA, except for the applicator and a harvester. For both trans-DCCA and 3-PBA in a given worker, excretion values expressed as creatinine-normalized concentrations were less variable than those expressed as excretion rates per kilogram body weight. Time-dependent variability in excretion values of workers confirms the need for serial urine sampling of at least two biomarkers of exposure, with minimally pre-exposure, end-of-shift sample the day of onset of exposure, and following morning void.


Asunto(s)
Biomarcadores/orina , Insecticidas/farmacocinética , Exposición Profesional/análisis , Permetrina/farmacocinética , Residuos de Plaguicidas/orina , Zea mays , Agricultura , Benzoatos/metabolismo , Benzoatos/orina , Monitoreo del Ambiente/métodos , Semivida , Humanos , Insecticidas/orina , Masculino , Permetrina/orina , Quebec , Factores de Tiempo
17.
J Appl Toxicol ; 35(7): 781-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25348660

RESUMEN

The effect of route of exposure on the kinetics of key biomarkers of exposure to benzo[a]pyrene (BaP), a known human carcinogen, was studied. Rats were exposed to an intravenous, intratracheal, oral and cutaneous dose of 40 µmol kg(-1) BaP. BaP and several metabolites were measured in blood, urine and feces collected at frequent intervals over 72 h post-treatment, using high-performance liquid chromatography/fluorescence. Only BaP and 3-hydroxyBaP (3-OHBaP) were detectable in blood at all time points. There were route-to-route differences in the excreted amounts (% dose) of metabolites but the observed time courses of the excretion rate were quite similar. In urine, total amounts of BaP metabolites excreted over the 0-72 h period followed the order: trans-4,5-dihydrodiolBaP (4,5-diolBaP) ≥ 3-OHBaP > 7-OHBaP ≥ 7,8-diolBaP after intravenous injection and intratracheal instillation; 3-OHBaP ≈ 7-OHBaP ≥ 4,5-diolBaP > 7,8-diolBaP after cutaneous application; 3-OHBaP ≥ 4,5-diolBaP ≈ 7-OHBaP > 7,8-diolBaP following oral administration. In feces, total amounts of BaP metabolites recovered were: 7-OHBaP ≈ 3-OHBaP > 4,5-diolBaP > 7,8-diolBaP > BaP-7,8,9,10-tetrol following all administration routes. For all exposure routes, excretion of 4,5- and 7,8-diolBaP was almost complete over the 0-24 h period in contrast with that of 3- and 7-OHBaP. This study confirms the interest of measuring multiple metabolites due to route-to-route differences in the relative excretion of the different biomarkers and in the time courses of diolBaPs versus OHBaPs. Concentration ratios of the different metabolites may help indicate time and main route of exposure.


Asunto(s)
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Administración Cutánea , Administración Oral , Animales , Benzo(a)pireno/administración & dosificación , Benzo(a)pireno/análisis , Benzo(a)pireno/toxicidad , Biomarcadores Farmacológicos/metabolismo , Carcinógenos/administración & dosificación , Carcinógenos/toxicidad , Heces/química , Inyecciones Intravenosas , Intubación Gastrointestinal , Intubación Intratraqueal , Masculino , Ratas , Ratas Sprague-Dawley
18.
J Appl Toxicol ; 35(12): 1586-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25772368

RESUMEN

Biomonitoring of pyrethroid exposure is largely conducted but human toxicokinetics has not been fully documented. This is essential for a proper interpretation of biomonitoring data. Time profiles and toxicokinetic parameters of key biomarkers of exposure to cypermethrin in orally exposed volunteers have been documented and compared with previously available kinetic data following permethrin dosing. Six volunteers ingested 0.1 mg kg(-1) bodyweight of cypermethrin acutely. The same volunteers were exposed to permethrin earlier. Blood samples were taken over 72 h after treatment and complete timed urine voids were collected over 84 h postdosing. Cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids (trans- and cis-DCCA) and 3-phenoxybenzoic acid (3-PBA) metabolites, common to both cypermethrin and permethrin, were quantified. Blood and urinary time courses of all three metabolites were similar following cypermethrin and permethrin exposure. Plasma levels of metabolites reached peak values on average ≈ 5-7 h post-dosing; the elimination phase showed mean apparent half-lives (t½ ) for trans-DCCA, cis-DCCA and 3-PBA of 5.1, 6.9 and 9.2 h, respectively, following cypermethrin treatment as compared to 7.1, 6.2 and 6.5 h after permethrin dosing. Corresponding mean values obtained from urinary rate time courses were peak values at ≈ 9 h post-dosing and apparent elimination t½ of 6.3, 6.4 and 6.4 h for trans-DCCA, cis-DCCA and 3-PBA, respectively, following cypermethrin treatment as compared to 5.4, 4.5 and 5.7 h after permethrin dosing. These data confirm that the kinetics of cypermethrin is similar to that of permethrin in humans and that their common biomarkers of exposure may be used for an overall assessment of exposure.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Insecticidas , Permetrina , Piretrinas , Administración Oral , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Femenino , Voluntarios Sanos , Humanos , Insecticidas/sangre , Insecticidas/orina , Masculino , Permetrina/sangre , Permetrina/orina , Piretrinas/sangre , Piretrinas/orina , Toxicocinética , Adulto Joven
19.
Risk Anal ; 34(3): 567-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24147611

RESUMEN

Physiological daily inhalation rates reported in our previous study for normal-weight subjects 2.6-96 years old were compared to inhalation data determined in free-living overweight/obese individuals (n = 661) aged 5-96 years. Inhalation rates were also calculated in normal-weight (n = 408), overweight (n = 225), and obese classes 1, 2, and 3 adults (n = 134) aged 20-96 years. These inhalation values were based on published indirect calorimetry measurements (n = 1,069) and disappearance rates of oral doses of water isotopes (i.e., (2)H2 O and H2 (18)O) monitored by gas isotope ratio mass spectrometry usually in urine samples for an aggregate period of over 16,000 days. Ventilatory equivalents for overweight/obese subjects at rest and during their aggregate daytime activities (28.99 ± 6.03 L to 34.82 ± 8.22 L of air inhaled/L of oxygen consumed; mean ± SD) were determined and used for calculations of inhalation rates. The interindividual variability factor calculated as the ratio of the highest 99th percentile to the lowest 1st percentile of daily inhalation rates is higher for absolute data expressed in m3 /day (26.7) compared to those of data in m3/kg-day (12.2) and m3/m2-day (5.9). Higher absolute rates generally found in overweight/obese individuals compared to their normal-weight counterparts suggest higher intakes of air pollutants (in µg/day) for the former compared to the latter during identical exposure concentrations and conditions. Highest absolute mean (24.57 m3/day) and 99th percentile (55.55 m3 /day) values were found in obese class 2 adults. They inhale on average 8.21 m3 more air per day than normal-weight adults.


Asunto(s)
Exposición por Inhalación , Obesidad/fisiopatología , Sobrepeso/fisiopatología , Medición de Riesgo , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Toxicol Lett ; 392: 56-63, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216072

RESUMEN

Canada has recently invested in the large-scale exploitation of scandium oxide. However, there are no studies available to date to understand its toxicokinetics in the animal or human body, which is necessary to assess exposure and health risks. The aim of this research was to investigate the toxicokinetics of absorbed scandium oxide (Sc2O3) using the rat as an experimental model. Male Sprague-Dawley rats were injected intravenously with 0.3 or 1 mg Sc2O3/kg body weight (bw). Blood and excreta (urine and feces) were collected sequentially during a 21-day period, and main organs (liver, spleen, lungs, kidneys, brain) were withdrawn at sacrifice on day 21. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for the measurement of Sc element in the different samples. The mean residence time (MRTIV) calculated from the blood profile was 19.7 ± 5.9 h and 43.4 ± 24.6 h at the lower and higher doses, respectively. Highest tissue levels of Sc were found in the lungs and liver; respective lung values of 10.6 ± 6.2% and 3.4 ± 2.3% of the Sc dose were observed at the time of sacrifice while liver levels represented 8.9 ± 6.4% and 4.6 ± 1.1%. Elimination of Sc from the body was not complete after 21 days. Cumulative fecal excretion over the 21-day collection period represented 12.3 ± 1.3% and 5.9 ± 1.0% of the lower and higher Sc doses, respectively, and showed a significant effect of the dose on the excretion; only a small fraction of the Sc dose was recovered in urine (0.025 ± 0.016% and 0.011 ± 0.004% in total, respectively). In addition to an effect of the dose on the toxicokinetics, results highlight the importance of the lung as a site of accumulation and retention of Sc2O3, which raises the question of the risks of effects related to respiratory exposure in workers. The results also question the relevance of urine as a matrix for biological exposure monitoring. A more in-depth inhalation toxicokinetic study would be necessary.


Asunto(s)
Escandio , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Toxicocinética , Escandio/análisis , Heces/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA