RESUMEN
Mate choice plays a fundamental role in speciation, yet we know little about the molecular mechanisms that underpin this crucial decision-making process. Stickleback fish differentially adapted to limnetic and benthic habitats are reproductively isolated and females of each species use different male traits to evaluate prospective partners and reject heterospecific males. Here, we integrate behavioural data from a mate choice experiment with gene expression profiles from the brains of females actively deciding whether to mate. We find substantial gene expression variation between limnetic and benthic females, regardless of behavioural context, suggesting general divergence in constitutive gene expression patterns, corresponding to their genetic differentiation. Intriguingly, female gene co-expression modules covary with male display traits but in opposing directions for sympatric populations of the two species, suggesting male displays elicit a dynamic neurogenomic response that reflects known differences in female preferences. Furthermore, we confirm the role of numerous candidate genes previously implicated in female mate choice in other species, suggesting evolutionary tinkering with these conserved molecular processes to generate divergent mate preferences. Taken together, our study adds important new insights to our understanding of the molecular processes underlying female decision-making critical for generating sexual isolation and speciation.
Asunto(s)
Encéfalo , Preferencia en el Apareamiento Animal , Smegmamorpha , Animales , Femenino , Encéfalo/metabolismo , Encéfalo/fisiología , Masculino , Smegmamorpha/genética , Smegmamorpha/fisiología , Expresión Génica , Especificidad de la EspecieRESUMEN
Individuals can reduce sampling costs and increase foraging efficiency by using information provided by others. One simple form of social information use is delayed local enhancement or increased interest in a location because of the past presence of others. We tested for delayed local enhancement in two ecomorphs of stickleback fish, benthic and limnetic, from three different lakes with putative independent evolutionary origins. Two of these lakes have reproductively isolated ecomorphs (species-pairs), whereas in the third, a previously intact species-pair recently collapsed into a hybrid swarm. Benthic fish in both intact species-pair lakes were more likely to exhibit delayed local enhancement despite being more solitary than limnetic fish. Their behaviour and morphology suggest their current perceived risk and past evolutionary pressure from predation did not drive this difference. In the hybrid swarm lake, we found a reversal in patterns of social information use, with limnetic-looking fish showing delayed local enhancement rather than benthic-looking fish. Together, our results strongly support parallel differentiation of social learning differences in recently evolved fish species, although hybridization can apparently erode and possibly even reverse these differences.
Asunto(s)
Smegmamorpha , Aprendizaje Social , Animales , Evolución Biológica , Hibridación Genética , Conducta Predatoria , LagosRESUMEN
Influential models of speciation by sexual selection posit either a single shared preference for a universal display, expressed only when males are locally adapted and hence in high condition, or that shared loci evolve population-specific alleles for displays and preferences. However, many closely related species instead show substantial differences across categorically different traits. We present a model of secondary contact whereby females maintain preferences for distinct displays that indicate both male condition and their match to distinct environments, fostering reproductive isolation among diverging species. This occurs even with search costs and with independent preference loci targeting independent displays. Such preferences can also evolve from standing variation. Divergence occurs because condition-dependent display and female preference depend on local ecology, and females obtain different benefits of choice. Given the ubiquity of ecological differences among environments, our model could help explain the evolution of striking radiations of displays seen in nature.
Asunto(s)
Adaptación Fisiológica , Preferencia en el Apareamiento Animal , Animales , Femenino , Especiación Genética , Masculino , FenotipoRESUMEN
Human-induced changes in climate and habitats push populations to adapt to novel environments, including new sensory conditions, such as reduced visibility. We studied how colonizing newly formed glacial lakes with turbidity-induced low-visibility affects anti-predator behaviour in Icelandic threespine sticklebacks. We tested nearly 400 fish from 15 populations and four habitat types varying in visibility and colonization history in their reaction to two predator cues (mechano-visual versus olfactory) in high versus low-visibility light treatments. Fish reacted differently to the cues and were affected by lighting environment, confirming that cue modality and light levels are important for predator detection and evasion. Fish from spring-fed lakes, especially from the highlands (likely more diverged from marine fish than lowland fish), reacted fastest to mechano-visual cues and were generally most active. Highland glacial fish showed strong responses to olfactory cues and, counter to predictions from the flexible stem hypothesis, the greatest plasticity in response to light levels. This study, leveraging natural, repeated invasions of novel sensory habitats, (i) illustrates rapid changes in anti-predator behaviour that follow due to adaptation, early life experience, or both, and (ii) suggests an additional role for behavioural plasticity enabling population persistence in the face of frequent changes in environmental conditions.
Asunto(s)
Smegmamorpha , Animales , Ecosistema , Islandia , Lagos , Conducta Predatoria/fisiología , Smegmamorpha/fisiologíaRESUMEN
Fish rely upon vision as a dominant sensory system for foraging, predator avoidance, and mate selection. Damage to the visual system, in particular to the neural retina of the eye, has been demonstrated to result in a regenerative response in captive fish that serve as model organisms (e.g. zebrafish), and this response restores some visual function. The purpose of the present study is to determine whether damage to the visual system that occurs in wild populations of fish also results in a regenerative response, offering a potentially ecologically relevant model of retinal regeneration. Adult threespine stickleback were collected from several water bodies of Iceland, and cryosectioned eye tissues were processed for hematoxylin and eosin staining or for indirect immunofluorescence using cell-specific markers. In many of the samples, eye flukes (metacercariae of Diplostomum spp) were present, frequently between the neural retina and retinal pigmented epithelium (RPE). Damage to the retina and to the RPE was evident in eyes containing flukes, and RPE fragments were observed within fluke bodies, suggesting they had consumed this eye tissue. Expression of a cell proliferation marker was also observed in both retina and RPE, consistent with a proliferative response to the damage. Interestingly, some regions of infected retina displayed "laminar fusions," in which neuronal cell bodies were misplaced within the major synaptic layer of the retina. These laminar fusions are also frequently found in regenerated zebrafish retina following non-parasitic (experimental) forms of retinal damage. The stickleback retina may therefore respond to fluke-mediated damage by engaging in retinal regeneration.
Asunto(s)
Smegmamorpha , Trematodos , Animales , Pez Cebra , Retina/metabolismo , EpitelioRESUMEN
Sensory systems function under the influence of multiple, interacting environmental properties. When environments change, so may perception through one or more sensory systems, as alterations in transmission properties may change how organisms obtain and use information. Humic acids, a natural and anthropogenically produced class of chemicals, have attributes that may change chemical and visual environments of aquatic animals, potentially with detrimental consequences on their ability to locate necessary resources. Here, we explore how environmental disturbance affects the way threespine sticklebacks (Gasterosteus aculeatus) use visual and olfactory information during foraging. We compared foraging behavior using visual, olfactory, and bimodal (visual and olfactory) information in the presence and absence of humic acids. We found evidence that humic acids reduced olfactory-based food detection. While visual perception was not substantially impaired by humic acids, the visual sense alone did not compensate for the loss of olfactory perception. These findings suggest that a suite of senses still may not be capable of compensating for the loss of information from individual modalities. Thus, senses may react disparately to rapid environmental change, and thereby push species into altered evolutionary trajectories.
Asunto(s)
Percepción Olfatoria , Smegmamorpha , Animales , Peces , Sustancias Húmicas , OlfatoRESUMEN
Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.
Asunto(s)
Genómica , Biodiversidad , Modelos GenéticosRESUMEN
The effects of photoperiod and temperature manipulation on reproductive cycles in threespine stickleback Gasterosteus aculeatus were examined. The experimental "advanced group" conditions were adjusted to simulate two reproductive seasons within a calendar year by adjusting light and temperature cycles. G. aculeatus subject to advanced conditions had two reproductive cycles per year, grew at normal rates and suffered little additional mortality. The research of many stickleback scientists would benefit from faster generation times and our methods could potentially shorten the time required to produce fish for genetic, behavioural and morphological work.
Asunto(s)
Cruzamiento/métodos , Fotoperiodo , Reproducción/fisiología , Smegmamorpha/fisiología , Temperatura , Animales , Estaciones del AñoRESUMEN
Males in many species have elaborated sexual traits that females strongly prefer, and these traits often conspicuously differ among species. How novel preferences and traits originate, however, is a challenging evolutionary problem because the initial appearance of only the female preference or only the male trait should reduce the ability to find a suitable mate, which could reduce fitness for individuals possessing those novel alleles. Here, we present a hypothesis for how novel preferences, as well as the novel male traits that females prefer, can originate, be favoured and spread in polyandrous species. Novel preference mutations can arise as 'veiled preferences' that are not expressed when the corresponding male trait is not present in the population, allowing preferences to be hidden from selection, and thus persist. In those cases when a male trait is present, veiled preferences provide a selective advantage, and females disproportionately produce offspring from preferred males through either mate choice or cryptic female choice. This tips the fitness advantage for novel males, allowing both preference and trait to spread, and limiting selection against them in the absence of the corresponding trait or preference.
Asunto(s)
Preferencia en el Apareamiento Animal , Conducta Sexual , Animales , Evolución Biológica , Femenino , Masculino , Fenotipo , Reproducción , Conducta Sexual AnimalRESUMEN
Speciation is facilitated when selection generates a rugged fitness landscape such that populations occupy different peaks separated by valleys. Competition for food resources is a strong ecological force that can generate such divergent selection. However, it is unclear whether intrasexual competition over resources that provide mating opportunities can generate rugged fitness landscapes that foster speciation. Here we use highly variable male F2 hybrids of benthic and limnetic threespine sticklebacks, Gasterosteus aculeatus Linnaeus, 1758, to quantify the male competition fitness landscape. We find that disruptive sexual selection generates two fitness peaks corresponding closely to the male phenotypes of the two parental species, favouring divergence. Most surprisingly, an additional region of high fitness favours novel hybrid phenotypes that correspond to those observed in a recent case of reverse speciation after anthropogenic disturbance. Our results reveal that sexual selection through male competition plays an integral role in both forward and reverse speciation.
Asunto(s)
Conducta Competitiva , Aptitud Genética , Especiación Genética , Smegmamorpha/fisiología , Animales , Masculino , Fenotipo , Conducta Sexual Animal , Smegmamorpha/genéticaRESUMEN
In this study, we characterize the retina of the spotted gar, Lepisosteus oculatus, a ray-finned fish. Gar did not undergo the whole genome duplication event that occurred at the base of the teleost fish lineage, which includes the model species zebrafish and medaka. The divergence of gars from the teleost lineage and the availability of a high-quality genome sequence make it a uniquely useful species to understand how genome duplication sculpted features of the teleost visual system, including photoreceptor diversity. We developed reagents to characterize the cellular organization of the spotted gar retina, including representative markers for all major classes of retinal neurons and Müller glia. We report that the gar has a preponderance of predicted short-wavelength shifted (SWS) opsin genes, including a duplicated set of SWS1 (ultraviolet) sensitive opsin encoding genes, a SWS2 (blue) opsin encoding gene, and two rod opsin encoding genes, all of which were expressed in retinal photoreceptors. We also report that gar SWS1 cones lack the geometric organization of photoreceptors observed in teleost fish species, consistent with the crystalline photoreceptor mosaic being a teleost innovation. Of note the spotted gar expresses both exo-rhodopsin (RH1-1) and rhodopsin (RH1-2) in rods. Exo-rhodopsin is an opsin that is not expressed in the retina of zebrafish and other teleosts, but rather is expressed in regions of the brain. This study suggests that exo-rhodopsin is an ancestral actinopterygian (ray finned fish) retinal opsin, and in teleosts its expression has possibly been subfunctionalized to the pineal gland.
Asunto(s)
Evolución Molecular , Peces/genética , Opsinas/genética , Retina/metabolismo , Opsinas de Bastones/genética , Animales , Peces/metabolismo , Opsinas/metabolismo , Retina/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Opsinas de Bastones/metabolismoRESUMEN
BACKGROUND: Sexual selection is largely driven by the availability of mates. Theory predicts that male competition and female choice should be density-dependent, with males competing more intensely at relatively high density, and females becoming increasingly discriminating when there are more males from whom to choose. Evidence for flexible mating decisions is growing, but we do not understand how environmental variation is incorporated into mate sampling strategies. We mimicked threespine stickleback (Gasterosteus aculeatus) breeding conditions in pools with high and low densities of nesting males and allowed females to search for mates to determine whether 1) mate search strategies change with the density of breeding males and 2) pre-copulatory components of mate choice (signalling, competition, search patterns, and mating decisions) are modified in parallel. RESULTS: While females sampled more males at high male density, suggesting greater opportunity for sexual selection, the expanded search did not result in females choosing males with more attractive sexual signals. This is likely because red throat colouration was twice as great when half as many males competed. Instead, females chose similarly at high and low male density, using a relative strategy to compare male traits amongst potential suitors. Reduced throat colour could reflect a trade-off with costly male competition. However, we did not observe more intense competition at higher relative density. Density-dependent signalling appears largely responsible for females associating with males who have more attractive signals at low density. If we lacked knowledge of plasticity in signalling, we might have concluded that females are more discriminating at low male density. CONCLUSIONS: To understand interactions between mate choice and population dynamics, we should consider how components of mate choice that precede the mating decision interact.
Asunto(s)
Preferencia en el Apareamiento Animal , Smegmamorpha/fisiología , Animales , Femenino , Masculino , Comportamiento de Nidificación , Conducta Sexual AnimalRESUMEN
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species.
Asunto(s)
Reacción de Prevención , Conducta Predatoria , Aislamiento Reproductivo , Conducta Sexual Animal , Smegmamorpha/fisiología , Trucha/fisiología , Animales , Femenino , Cadena Alimentaria , Masculino , Preferencia en el Apareamiento Animal , Reconocimiento en Psicología , SimpatríaRESUMEN
Anthropogenic change threatens global biodiversity by causing severe ecological disturbance and extinction. Here, we consider the effects of anthropogenic change on one process that generates biodiversity. Sexual selection (a potent evolutionary force and driver of speciation) is highly sensitive to the environment and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alterations to sexual display and mate preference can make it harder to distinguish between conspecific and heterospecific mates or can weaken divergence via sexual selection, leading to higher rates of hybridization and biodiversity loss. Occasionally, anthropogenically altered sexual selection can abet diversification, but this appears less likely than biodiversity loss. In our rapidly changing world, a full understanding of sexual selection and speciation requires a global change perspective.
Asunto(s)
Biodiversidad , Especiación Genética , Selección Sexual , Animales , Efectos Antropogénicos , Preferencia en el Apareamiento Animal , Evolución BiológicaRESUMEN
The contribution of sexual selection to diversification remains poorly understood after decades of research. This may be in part because studies have focused predominantly on the strength of sexual selection, which offers an incomplete view of selection regimes. By contrast, students of natural selection focus on environmental differences that help compare selection regimes across populations. To ask how this disparity in focus may affect the conclusions of evolutionary research, we relate the amount of diversification in mating displays to quantitative descriptions of the strength and the amount of divergence in mate preferences across a diverse set of case studies of mate choice. We find that display diversification is better explained by preference divergence rather than preference strength; the effect of the latter is more subtle, and is best revealed as an interaction with the former. Our findings cast the action of sexual selection (and selection in general) in a novel light: the strength of selection influences the rate of evolution, and how divergent selection is determines how much diversification can occur. Adopting this view will enhance tests of the relative role of natural and sexual selection in processes such as speciation.
Asunto(s)
Insectos/fisiología , Preferencia en el Apareamiento Animal , Conducta Sexual Animal , Arañas/fisiología , Vertebrados/fisiología , Animales , Evolución Biológica , Femenino , MasculinoRESUMEN
Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
Asunto(s)
Ecosistema , Especiación Genética , Humanos , Evolución Biológica , Biodiversidad , FilogeniaRESUMEN
Despite recent progress, we still know relatively little about the genetic architecture that underlies adaptation to divergent environments. Determining whether the genetic architecture of phenotypic adaptation follows any predictable patterns requires data from a wide variety of species. However, in many organisms, genetic studies are hindered by the inability to perform genetic crosses in the laboratory or by long generation times. Admixture mapping is an approach that circumvents these issues by taking advantage of hybridization that occurs between populations or species in the wild. Here, we demonstrate the utility of admixture mapping in a naturally occurring hybrid population of threespine sticklebacks (Gasterosteus aculeatus) from Enos Lake, British Columbia. Until recently, this lake contained two species of sticklebacks adapted to divergent habitats within the lake. This benthic-limnetic species pair diverged in a number of phenotypes, including male nuptial coloration and body shape, which were previously shown to contribute to reproductive isolation between them. However, recent ecological disturbance has contributed to extensive hybridization between the species, and there is now a single, admixed population within Enos Lake. We collected over 500 males from Enos Lake and found that most had intermediate nuptial colour and body shape. By genotyping males with nuptial colour at the two extremes of the phenotypic distribution, we identified seven genomic regions on three chromosomes associated with divergence in male nuptial colour. These genomic regions are also associated with variation in body shape, suggesting that tight linkage and/or pleiotropy facilitated adaptation to divergent environments in benthic-limnetic species pairs.
Asunto(s)
Adaptación Fisiológica/genética , Hibridación Genética , Smegmamorpha/genética , Animales , Colombia Británica , Ecosistema , Ligamiento Genético , Genotipo , Masculino , Fenotipo , Pigmentación , Análisis de Secuencia de ADNRESUMEN
During sexual imprinting, offspring learn parental phenotypes and then select mates who are similar to their parents. Imprinting has been thought to contribute to the process of speciation in only a few rare cases; this is despite imprinting's potential to generate assortative mating and solve the problem of recombination in ecological speciation. If offspring imprint on parental traits under divergent selection, these traits will then be involved in both adaptation and mate preference. Such 'magic traits' easily generate sexual isolation and facilitate speciation. In this study, we show that imprinting occurs in two ecologically divergent stickleback species (benthics and limnetics: Gasterosteus spp.). Cross-fostered females preferred mates of their foster father's species. Furthermore, imprinting is essential for sexual isolation between species; isolation was reduced when females were raised without fathers. Daughters imprinted on father odour and colour during a critical period early in development. These traits have diverged between the species owing to differences in ecology. Therefore, we provide the first evidence that imprinting links ecological adaptation to sexual isolation between species. Our results suggest that imprinting may facilitate the evolution of sexual isolation during ecological speciation, may be especially important in cases of rapid diversification, and thus play an integral role in the generation of biodiversity.
Asunto(s)
Evolución Biológica , Impronta Psicológica/fisiología , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Smegmamorpha/fisiología , Animales , Conducta de Elección , Ecología , Femenino , Masculino , Fenotipo , Especificidad de la EspecieRESUMEN
The peripheral sensory systems, whose morphological attributes help determine the acquisition of distinct types of information, provide a means to quantitatively compare multiple modalities of a species' sensory ecology. We used morphological metrics to characterize multiple sensory modalities-the visual, olfactory, and mechanosensory lateral line sensory systems-for Gasterosteus aculeatus, the three-spined stickleback, to compare how sensory systems vary in animals that evolve in different ecological conditions. We hypothesized that the dimensions of sensory organs and correlations among sensory systems vary in populations adapted to marine and freshwater environments, and have diverged further among freshwater lake-dwelling populations. Our results showed that among environments, fish differed in which senses are relatively elaborated or reduced. When controlling for body length, littoral fish had larger eyes, more neuromasts, and smaller olfactory tissue area than pelagic or marine populations. We also found differences in the direction and magnitude of correlations among sensory systems for populations even within the same habitat type. Our data suggest that populations take different trajectories in how visual, olfactory, and lateral line systems respond to their environment. For the populations we studied, sensory modalities do not conform in a predictable way to the ecological categories we assigned.