Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(12): 6671-6681, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926855

RESUMEN

Silica surface functionalization is often done through the condensation of functional silanes on silanols, silica surfaces' terminal groups. APTES, aminopropyltriethoxysilane, is widely used due to its assumed high reactivity with silanols, kinetically promoted by the catalytic action of the terminal amine function. Here, we revisit, based on a quantitative analysis by solid-state 29Si NMR, the assembly of this silane on silica surfaces to investigate whether its presence results from grafting, i.e., hetero-condensation with silanol groups or from homo-condensation of silane molecules in solution leading to polycondensates physisorbed on silica. We investigate the interaction of APTES with a crystalline layered silicate, ilerite, and with amorphous nonporous silica. We also studied a second silane, cyanopropyltrichlorosilane (CPTCS), terminated with a nitrile group. Our results undoubtedly prove that while CPTCS is grafted on the silica surface, the presence of APTES on silica and silicate materials is only marginally associated with silanol consumption. The analysis of the signal related to silicon atoms from silanes (Tn species) and those from silica (Qn species) allowed for the accurate estimation of the extent of homo-condensation vs grafting based on the ratio of T-O-T/Q-O-T siloxane bridges. These findings deeply question the well-established certainties on APTES assembly on silica that should no longer be seen as grafting of alkoxysilane by hetero-condensation with silanol groups but more accurately as a homo-condensed network of silanes, predominantly physisorbed on the surface but including some sparse anchoring points to the surface involving less than 6% of the overall silanol groups.

2.
Anal Bioanal Chem ; 409(26): 6227-6234, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28815272

RESUMEN

We describe the engineering of stable gold nanoparticle (AuNP) bioconjugates for the detection of staphylococcal enterotoxin A (SEA) using localized surface plasmon resonance (LSPR). Two types of AuNP bioconjugates were prepared by covalently attaching anti-SEA antibody (Ab) or SEA to AuNPs. This was achieved by reacting Traut's reagent with lysine residues of both proteins to generate thiol groups that bind to gold atoms on the AuNP surface. These bioconjugates were characterized in-depth by absorption spectroscopy, cryo-transmission electron microscopy, dynamic light scattering, and zeta potential measurements. Their stability over time was assessed after 1 year storage in the refrigerator at 4 °C. Two formats of homogeneous binding assays were set up on the basis of monitoring of LSPR peak shifts resulting from the immunological reaction between the (i) immobilized antibody and free SEA, the direct assay, or (ii) immobilized SEA and free antibody, the competitive assay. In both formats, a correlation between the LSPR band shift and SEA concentration could be established. Though the competitive format did not meet the expected analytical performance, the direct format, the implementation of which was very simple, afforded a specific and sensitive response within a broad dynamic range-nanogram per milliliter to microgram per milliliter. The limit of detection (LOD) of SEA was estimated to equal 5 ng/mL, which was substantially lower than the LOD obtained using a quartz crystal microbalance. Moreover, the analytical performance of AuNP-Ab bioconjugate was preserved after 1 year of storage at 4 °C. Finally, the LSPR biosensor was successfully applied to the detection of SEA in milk samples. The homogeneous nanoplasmonic immunosensor described herein provides an attractive alternative for stable and reliable detection of SEA in the nanogram per milliliter range and offers a promising avenue for rapid, easy to implement, and sensitive biotoxin detection. Sensitive LSPR Biosensing of SEA in buffer and milk using stable AuNP-Antibody bioconjugates Graphical abstract.


Asunto(s)
Anticuerpos Inmovilizados/química , Enterotoxinas/análisis , Análisis de los Alimentos/métodos , Oro/química , Nanopartículas del Metal/química , Leche/microbiología , Resonancia por Plasmón de Superficie/métodos , Animales , Inmunoensayo/métodos , Límite de Detección , Leche/química , Staphylococcus/aislamiento & purificación
3.
Analyst ; 141(11): 3233-8, 2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27163736

RESUMEN

We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles.


Asunto(s)
Técnicas Biosensibles , Colorimetría/instrumentación , Teléfono Inteligente , Glucosa/análisis , Oro , Humanos , Nanopartículas del Metal , Análisis Espectral , Troponina I/análisis
4.
Chemistry ; 21(41): 14555-61, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26285049

RESUMEN

Despite the numerous studies on the self-assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol-gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X-ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol-gold interface. The long-chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short-chain alkylthiol SAMs were adsorbed more strongly than long-chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol-gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single-molecule adsorption than self-assembly, whereas for long chains, interactions between alkyl chains drive the system to self-assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur-gold interface.

5.
Anal Bioanal Chem ; 407(29): 8873-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26439474

RESUMEN

The non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF) is found worldwide in the aqueous environment. Therefore, it has raised increased public concern on potential long-term impact on human health and wildlife. The importance of DCF has been emphasized by the European Union recently by including this pharmaceutical in the first watch list of priority hazardous substances in order to gather Union-wide monitoring data. Rapid and cheap methods of analysis are therefore required for fresh and wastewater monitoring with high sample load. Here, for the first time, well-characterized monoclonal antibodies (mAbs) against DCF were generated and a highly sensitive ELISA developed. The best antibody (mAb 12G5) is highly affine (KD = 1.5 × 10(-10) M), stable to potential matrix interferences such as pH value (pH range 5.2-9.2), calcium ion concentration (up to 75 mg/L), and humic acid content (up to 20 mg/L). The limit of detection (LOD, S/N = 3) and IC50 of the ELISA calibration curve were 7.8 and 44 ng/L, respectively. The working range was defined between 11 and 180 ng/L. On average, about 10 % cross-reactivity (CR) was found for DCF metabolites 5-OH-DCF, 4'-OH-DCF, and DCF-acyl glucuronide, but other structurally related NSAIDs showed binding <1 % compared to the parent compound. While DCF concentrations at the low ppt range were measured in river and lake water, higher values of 2.9 and 2.1 µg/L were found in wastewater influents and effluents, respectively. These results could be confirmed by solid phase extraction combined with LC-MS.


Asunto(s)
Antiinflamatorios no Esteroideos/análisis , Anticuerpos Monoclonales/química , Diclofenaco/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Agua Dulce/análisis , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Ensayo de Inmunoadsorción Enzimática/economía , Humanos , Límite de Detección , Extracción en Fase Sólida/economía , Extracción en Fase Sólida/métodos , Factores de Tiempo
6.
Sensors (Basel) ; 15(9): 21239-64, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343666

RESUMEN

In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.


Asunto(s)
Técnicas Biosensibles/métodos , Espectrofotometría Infrarroja/métodos , Benzo(a)pireno/análisis , Monitoreo del Ambiente/métodos , Modelos Químicos , Vibración
7.
Langmuir ; 30(14): 4066-77, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24635492

RESUMEN

We investigated the mechanism of enzyme immobilization on silanized surfaces through coupling agents (cross-linkers) in order to understand the role of these molecules on interfacial processes and their effect on catalytic activity. To this end, we used a model multimeric enzyme (G6PDH) and several cross-linking molecules with different chemical properties, including the nature of the end-group (-NCO, -NCS, -CHO), the connecting chain (aliphatic vs aromatic), and geometrical constraints (meta vs para-disubstituted aromatics). There did not seem to be radical differences in the mechanism of enzyme adsorption according to the linker used as judged from QCM-D, except that in the case of DIC (1,4-phenylene diisocyanate) the adsorption occurred more rapidly. In contrast, the nature of the cross-linker exerted a strong influence on the amount of enzyme immobilized as estimated from XPS, and more unexpectedly on the stability of the underlying silane layer. DIC, PDC (1,4-phenylene diisothiocyanate), or GA (glutaraldehyde) allowed successful enzyme immobilization. When the geometry of the linker was changed from 1,4-phenylene diisothiocyanate to 1,3-phenylene diisothiocyanate (MDC), the silane layer was subjected to degradation, upon enzyme adsorption, and the amount of immobilized molecules was significantly lowered. TE (terephtalaldehyde) and direct enzyme deposition without cross-linker were similar to MDC. The organization of immobilized enzymes also depended on the immobilization procedure, as different degrees of aggregation were observed by AFM. A correlation between the size of the aggregates and the catalytic properties of the enzyme was established, suggesting that aggregation may enhance the thermostability of the multimeric enzyme, probably through a compaction of the 3D structure.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Silanos/metabolismo , Biocatálisis , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Enzimas Inmovilizadas/química , Glucosafosfato Deshidrogenasa/química , Tamaño de la Partícula , Silanos/química , Propiedades de Superficie
8.
Chempluschem ; 89(6): e202300717, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38406894

RESUMEN

Two BODIPY-C60-peptide assemblies were synthesized by CuAAC reactions of BODIPY-C60 dyads and a helical peptide functionalized with a terminal alkyne group and an azide group, respectively. The helical peptide within these assemblies was functionalized at its other end by a disulfide group, allowing formation of self-assembled monolayers (SAMs) on gold surfaces. Characterizations of these SAMs, as well as those of reference molecules (BODIPY-C60-alkyl, C60-peptide and BODIPY-peptide), were carried out by PM-IRRAS and cyclic voltammetry. BODIPY-C60-peptide SAMs are more densely packed than BODIPY-C60-alkyl and BODIPY-peptide based SAMs. These findings were attributed to the rigid peptide helical conformation along with peptide-peptide and C60-C60 interactions within the monolayers. However, less dense monolayers were obtained with the target assemblies compared to the C60-peptide, as the BODIPY entity likely disrupts organization within the monolayers. Finally, electron transfer kinetics measurements by ultra-fast electrochemistry experiments demonstrated that the helical peptide is a better electron mediator in comparison to alkyl chains. This property was exploited along with those of the BODIPY-C60 dyads in a photo-current generation experiment by converting the resulting excited and/or charge separated states from photo-illumination of the dyad into electrical energy.

9.
Nanoscale ; 15(6): 2614-2623, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36648212

RESUMEN

While colloidal quantum dots (QDs) are commonly used as fluorescent donors within biosensors based on Förster resonant energy transfer (FRET), they are hesitantly employed as acceptors. On the sole basis of Förster theory and the well-known behaviour of organic dyes, it is often argued that the QD absorption band over the UV-visible range is too wide. Discarding these preconceptions inherited from classical fluorophores, we experimentally examine the FRET process occurring between donor and acceptor CdTe QDs and provide a mathematical description of it. We evidence that the specific features of QDs unexpectedly lead to the enhancement of acceptors' emission (up to +400%), and are thus suitable for the design of highly efficient all-QD based FRET sensors. Our model enables us to identify the critical parameters maximizing the contrast between positive and negative biosensing readouts: the concentrations of donors and acceptors, their spectral overlap, the densities of their excitonic states, their dissipative coupling with the medium and the statistics of QD-QD chemical pairing emerge as subtle and determinant parameters. We relate them quantitatively to the measured QD-QD FRET efficiency and discuss how they must be optimized for biosensing applications.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia , Telurio
10.
ACS Appl Bio Mater ; 6(9): 3423-3432, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37078387

RESUMEN

Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of ß-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.


Asunto(s)
Thoracica , Animales , Thoracica/química , Thoracica/metabolismo , Biomineralización , Cementos de Resina/metabolismo , Amiloide/metabolismo
11.
Waste Manag ; 168: 146-155, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301087

RESUMEN

We report the engineering of insecticide films based on two mineral clays, montmorillonite and kaolinite, combined to chitosan and/or cellulose acetate originating from cigarette filter and subsequently impregnated with tobacco essential oil extracted from tobacco dust. Both binary composites, i.e. clay and chitosan or clay and cellulose acetate, and ternary composites containing clay, chitosan and cellulose acetate were prepared and characterized by XRD, DLS, ELS, and IR to investigate the nature of interactions within the composites. The two clay minerals showed different kinds of interaction with chitosan: intercalation in the case of Montmorillonite vs adsorption on the external surface for kaolinite. Secondly, the nicotine release from the composites films at different temperatures was studied by in-situ IR. The Montmorillonite composites, particularly the ternary one, showed a better encapsulation of nicotine which release was limited. Finally, the insecticidal activity of the composites was evaluated against the Tribolium castaneum a common wheat pest. The differences observed between montmorillonite and kaolinite composites were rationalized in relation to the nature of interaction between the components. The fumigant bioassay showed promising insecticidal effects in the case of the ternary composite cellulose acetate/chitosan/montmorillonite. Therefore, these eco-friendly nanocomposites can be used efficiently for the sustainable protection of stored cereals.


Asunto(s)
Quitosano , Insecticidas , Nanocompuestos , Arcilla , Caolín , Bentonita , Nicotiana , Nicotina , Minerales
12.
Talanta ; 255: 124245, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610258

RESUMEN

We introduce here the engineering of nanobiosensors designed from gold nanorods coated with an ultrathin layer of silica (AuNR@SiO2) and biofunctionalized with antibodies for the Localized Surface Plasmon Resonance (LSPR) biosensing of proteins. Despite the outstanding properties of AuNRs, their use for LSPR biosensing is limited due to the presence of the surfactant cetyltrimethylammonium bromide (CTAB) - mandatory for their synthesis - which forms a strongly-bounded and positively-charged bilayer at their surface and significantly complicates their bio-functionalization. When coated with a thin layer of silica, these nanomaterials exhibit an improved sensitivity to refractive index change which augurs for better analytical performances. Here, we undertook an in-depth investigation of the biofunctionalization of AuNR@SiO2via three different routes to design and test a label-free LSPR biosensor operating in solution. In the first route, we took advantage of the negatively charged external silica shell to immobilize anti-rabbit IgG antibody by electrostatic physisorption. In the second and third routes, the silica surface was reacted with thiol or aldehyde terminated silanes, subsequently utilized to covalently attach anti-rabbit IgG antibody to the surface. The resulting nanoprobes were characterized by a wide range of physical methods (TEM, XPS, DLS, ELS and UV-Visible spectroscopy) then tested for the biosensing of rabbit-IgG. The three nanobiosensors maintain an excellent colloidal stability after analyte recognition and exhibit extremely high analytical performances in terms of specificity and dynamic range, with an LoD down to 12 ng/mL.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Resonancia por Plasmón de Superficie/métodos , Oro/química , Dióxido de Silicio/química , Nanotubos/química , Inmunoglobulina G
13.
Langmuir ; 28(1): 656-65, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22107153

RESUMEN

In this work the mechanism of (3-aminopropyl)triethoxysilane (APTES) interaction with silicon surfaces is investigated at the molecular level. We studied the influence of experimental parameters such as time, temperature, and concentration on the quality of the APTES layer in terms of chemical properties, morphology, and stability in aqueous medium. This was achieved using a highly sensitive IR mode recently developed, grazing angle attenuated total reflection (GA-ATR). This technique provides structural information on the formed APTES layer. The topography of this layer was investigated by atomic force microscopy in aqueous medium. The hydrophilicity was also studied using contact angle measurement. Combining these techniques enables discussion of the mechanism of silane grafting. Considerable differences were observed depending on the reaction temperature, room temperature or 90 °C. The data suggest the presence of two adsorption sites with different affinities on the oxidized silicon layer. This also allows the optimal parameters to be established to obtain an ordered and stable silane layer. The adsorption of proteins on the APTES layer was achieved and monitored using in situ quartz crystal microbalance with dissipation monitoring and ex situ GA-ATR analyses.


Asunto(s)
Proteínas/química , Silanos/química , Adsorción , Microscopía de Fuerza Atómica , Propiedades de Superficie
14.
Biosensors (Basel) ; 12(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36290935

RESUMEN

We designed a magneto-plasmonic biosensor for the immunodetection of antigens in minute sample volume. Both spherical gold nanoparticles (AuNP) and magnetic beads (MB) were conjugated to goat anti-rabbit IgG antibody (Ab) capable of recognizing a model target, rabbit IgG (rIgG). The AuNP bioconjugate was used as the optical detection probe while the MB one was used as the capture probe. Addition of the target analyte followed by detection probe resulted in the formation of a sandwich immunocomplex which was separated from the unbound AuNP-Ab conjugate by application of an external magnetic field. The readout was executed either in a direct or in indirect way by measuring the UV-Visible spectrum of each fraction in a specially designed microcell. Dose-response curves were established from the optical signal of the immunocomplex and unbound AuNP-Ab conjugate fractions. Finally, the assay was transposed to a microfluidic cell specially designed to enable easy separation of the immunocomplex and AuNP-Ab conjugate fractions and subsequent analysis of the latter fraction and achieve the quantification of the analyte in the ng/mL concentration range.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro , Dispositivos Laboratorio en un Chip , Técnicas Biosensibles/métodos , Inmunoglobulina G , Inmunoensayo/métodos
15.
ACS Sens ; 7(6): 1657-1665, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35446554

RESUMEN

Extracellular vesicles (EVs) are secreted nanoparticles that are involved in intercellular communication and that modulate a wide range of biological processes in normal and disease conditions. However, EVs are highly heterogeneous in terms of origin in the cell, size, and density. As a result, complex protocols are required to identify and characterize specific EV subpopulations, limiting biomedical applications, notably in diagnostics. Here, we show that combining quartz crystal microbalance with dissipation (QCM-D) and nanoplasmonic sensing (NPS) provides a facile method to track the viscoelastic properties of small EVs. We applied this multisensing strategy to analyze small EVs isolated by differential ultracentrifugation from knock-in mouse striatal cells expressing either a mutated allele or wild-type allele of huntingtin (Htt), the Huntington's disease gene. Our results validate the sensing strategy coupling QCM-D and NPS and suggest that the mass and viscoelastic dissipation of EVs can serve as potent biomarkers for sensing the intercellular changes associated with the neurodegenerative condition.


Asunto(s)
Vesículas Extracelulares , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neurodegenerativas/diagnóstico , Cuarzo/química , Tecnicas de Microbalanza del Cristal de Cuarzo
16.
Antibiotics (Basel) ; 11(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35052891

RESUMEN

Nosocomial and medical device-induced biofilm infections affect millions of lives and urgently require innovative preventive approaches. These pathologies have led to the development of numerous antimicrobial strategies, an emergent topic involving both natural and synthetic routes, among which some are currently under testing for clinical approval and use. Antimicrobial peptides (AMPs) are ideal candidates for this fight. Therefore, the strategies involving surface functionalization with AMPs to prevent bacterial attachment/biofilms formation have experienced a tremendous development over the last decade. In this review, we describe the different mechanisms of action by which AMPs prevent bacterial adhesion and/or biofilm formation to better address their potential as anti-infective agents. We additionally analyze AMP immobilization techniques on a variety of materials, with a focus on biomedical applications. Furthermore, we summarize the advances made to date regarding the immobilization strategies of AMPs on various surfaces and their ability to prevent the adhesion of various microorganisms. Progress toward the clinical approval of AMPs in antibiotherapy is also reviewed.

17.
ACS Sens ; 6(9): 3485-3493, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34436869

RESUMEN

Because the broadly consumed pain killer diclofenac (DCF) is a recognized pollutant, monitoring of its concentration is routinely performed in surface waters. As a valuable alternative to chromatographic and immunochemical assays, we developed a piezoelectric immunosensor to quantify DCF, first in buffer (PBS) and then in river water samples. A sensing layer comprising DCF was built up on the surface of silica-coated quartz sensors using a robust coupling chemistry. Binding of a highly affine monoclonal anti-DCF antibody was monitored in real time by quartz crystal microbalance with dissipation (QCM-D) measurements from which were determined a dissociation constant KD of 0.24 nM and an acoustic antibody surface coverage of 1120 ng/cm2 at saturation. On the other hand, an optical antibody surface coverage of 260 ng/cm2 was determined by combined nanoplasmonic sensing measurement, giving a hydration percentage of 75% for the antibody monolayer. DCF assay was further set up following a competitive format for which binding of antibody to the sensing layer is inhibited by DCF in solution. The piezoelectric sensor response expressed as frequency shift ΔF was inversely related to the concentration of DCF with a dynamic range of 15-46 nM and a limit of detection (LoD) of 9.5 nM (2.8 µg/L) in PBS. This piezoelectric immunosensor was eventually applied to the assay of DCF in surface water samples taken at three different locations in the Seine and Marne rivers. The calculated concentration of DCF in these samples was in good agreement with official data published by the French center of water analysis eaufrance.


Asunto(s)
Técnicas Biosensibles , Recursos Hídricos , Acústica , Diclofenaco , Inmunoensayo
18.
Biosens Bioelectron ; 165: 112370, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729502

RESUMEN

Antibody-Gold nanoparticle (Ab-AuNP) bioconjugates are widely used in the field of biosensing. This prompted researchers to set up various strategies to conjugate antibodies to gold nanoparticles. Optimal conjugation is of critical importance, as the Ab-AuNP bioconjugates should be stable while maintaining the ability of the antibody to recognize and bind its corresponding antigen. All the same, a high coverage of antibodies on AuNPs is a key-step to build up a sensitive biosensor, but an ideal coverage requires to be perfectly balanced with the orientation and accessibility of the conjugated antibodies. In this review, we intend to provide the reader with the key elements allowing for mastering the conjugation of Ab to AuNP and rationalizing, at the molecular level, the mechanisms involved together with the expected antibody coverages and orientations. We will focus on IgG-type antibodies conjugated to spherical AuNPs as these bioconjugates are the most commonly used ones for biosensors. First, we report an exhaustive survey of the methods of conjugation, via strategies of physisorption and chemisorption. Then we provide a critical restitution of the relevant strategies allowing the quantification of antibodies coverage on gold nanoparticles either through direct analysis of the bioconjugates or indirect analysis of the supernatant. In the last part, we review and discuss selected applications of these Ab-AuNP bioconjugates in optical biosensing.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro , Inmunoglobulina G , Resonancia por Plasmón de Superficie
19.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121012

RESUMEN

Multifunctional micro- and nanoparticles have potential uses in advanced detection methods, such as the combined separation and detection of biomolecules. Combining multiple tasks is possible but requires the specific tailoring of these particles during synthesis or further functionalization. Here, we synthesized nanostructured gold shells on magnetic particle cores and demonstrated the use of them in surface-enhanced Raman scattering (SERS). To grow the gold shells, gold seeds were bound to silica-coated iron oxide aggregate particles. We explored different functional groups on the surface to achieve different interactions with gold seeds. Then, we used an aqueous cetyltrimethylammonium bromide (CTAB)-based strategy to grow the seeds into spikes. We investigated the influence of the surface chemistry on seed attachment and on further growth of spikes. We also explored different experimental conditions to achieve either spiky or bumpy plasmonic structures on the particles. We demonstrated that the particles showed SERS enhancement of a model Raman probe molecule, 2-mercaptopyrimidine, on the order of 104. We also investigated the impact of gold shell morphology-spiky or bumpy-on SERS enhancements and on particle stability over time. We found that spiky shells lead to greater enhancements, however their high aspect ratio structures are less stable and morphological changes occur more quickly than observed with bumpy shells.

20.
Biosensors (Basel) ; 10(10)2020 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080925

RESUMEN

Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro , Dióxido de Silicio , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA