Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 28(4): 384-95, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24478331

RESUMEN

The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the posterior end of the embryo during early zebrafish development by the regulated expression of cdc25a, a key controller of mitotic entry. Through the use of a transgenic line that misexpresses cdc25a, we show that this compartmentalization is critical for the formation of the posterior body. Upon misexpression of cdc25a, several essential T-box transcription factors are abnormally expressed, including Spadetail/Tbx16, which specifically prevents the normal onset of myoD transcription, leading to aberrant muscle formation. Our results demonstrate that compartmentalization of proliferation during early embryogenesis is critical for both extension of the vertebrate body and differentiation of the multipotent posterior progenitor cells to the muscle cell fate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre/citología , Pez Cebra/embriología , Pez Cebra/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Animales , Diferenciación Celular , División Celular , Proliferación Celular , Células Musculares/citología , Fosforilación , Células Madre/enzimología , Proteínas de Dominio T Box/genética , Proteínas de Pez Cebra/genética
2.
Development ; 142(14): 2499-507, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062939

RESUMEN

Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2. We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16, which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Proteínas de Dominio T Box/metabolismo , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proteínas de Choque Térmico/metabolismo , Hibridación in Situ , Ratones , Microscopía Fluorescente , Músculos/embriología , Músculos/metabolismo , Neuronas/metabolismo , Oligonucleótidos/química , Regiones Promotoras Genéticas , Células Madre/citología , Transgenes , Proteína Wnt3A/metabolismo , Pez Cebra
3.
Dev Biol ; 393(2): 270-281, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25034710

RESUMEN

Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 7/genética , Esbozos de los Miembros/embriología , Polidactilia/genética , Animales , Apoptosis , Proteína Morfogenética Ósea 2/antagonistas & inhibidores , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Proteína Morfogenética Ósea 7/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/genética , Proliferación Celular , Condrogénesis/genética , Citocinas , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/embriología , Ratones , Ratones Transgénicos , Mutación , Polidactilia/embriología , Factor de Transcripción SOX9/biosíntesis , Transducción de Señal/genética
4.
Proc Natl Acad Sci U S A ; 107(12): 5489-94, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20212115

RESUMEN

Expression of Sonic Hedgehog (Shh) in the posterior mesenchyme of the developing limb bud regulates patterning and growth of the developing limb by activation of the Hedgehog (Hh) signaling pathway. Through the analysis of Shh and Hh signaling target genes, it has been shown that activation in the limb bud mesoderm is required for normal limb development to occur. In contrast, it has been stated that Hh signaling in the limb bud ectoderm cannot occur because components of the Hh signaling pathway and Hh target genes have not been found in this tissue. However, recent array-based data identified both the components necessary to activate the Hh signaling pathway and targets of this pathway in the limb bud ectoderm. Using immunohistochemistry and various methods of detection for targets of Hh signaling, we found that SHH protein and targets of Hh signaling are present in the limb bud ectoderm including the apex of the bud. To directly test whether ectodermal Hh signaling was required for normal limb patterning, we removed Smo, an essential component of the Hh signaling pathway, from the apical ectodermal ridge (AER). Loss of functional Hh signaling in the AER resulted in disruption of the normal digit pattern and formation of additional postaxial cartilaginous condensations. These data indicate that contrary to previous accounts, the Hh signaling pathway is present and required in the developing limb AER for normal autopod development.


Asunto(s)
Extremidades/embriología , Proteínas Hedgehog/fisiología , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Ectodermo/embriología , Retroalimentación Fisiológica , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Modelos Biológicos , Polidactilia/embriología , Polidactilia/genética , Polidactilia/fisiopatología , Embarazo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Receptor Smoothened , Procesos Estocásticos
5.
Development ; 136(23): 3949-57, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19906862

RESUMEN

Malformations of the external genitalia are among the most common congenital anomalies in humans. The urogenital and anorectal sinuses develop from the embryonic cloaca, and the penis and clitoris develop from the genital tubercle. Within the genital tubercle, the endodermally derived urethral epithelium functions as an organizer and expresses sonic hedgehog (Shh). Shh knockout mice lack external genitalia and have a persistent cloaca. This identified an early requirement for Shh, but precluded analysis of its later role in the genital tubercle. We conducted temporally controlled deletions of Shh and report that Shh is required continuously through the onset of sexual differentiation. Shh function is divisible into two temporal phases; an anogenital phase, during which Shh regulates outgrowth and patterning of the genital tubercle and septation of the cloaca, and a later external genital phase, during which Shh regulates urethral tube closure. Disruption of Shh function during the anogenital phase causes coordinated anorectal and genitourinary malformations, whereas inactivation during the external genital phase causes hypospadias. Shh directs cloacal septation by promoting cell proliferation in adjacent urorectal septum mesenchyme. Additionally, conditional inactivation of smoothened in the genital ectoderm and cloacal/urethral endoderm shows that the ectoderm is a direct target of Shh and is required for urethral tube closure, highlighting a novel role for genital ectoderm in urethragenesis. Identification of the stages during which disruption of Shh results in either isolated or coordinated malformations of anorectal and external genital organs provides a new tool for investigating the etiology of anogenital malformations in humans.


Asunto(s)
Cloaca/embriología , Genitales/embriología , Proteínas Hedgehog/metabolismo , Organogénesis/genética , Animales , Proliferación Celular , Cloaca/citología , Cloaca/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Embrión de Mamíferos , Femenino , Eliminación de Gen , Genitales/citología , Genitales/metabolismo , Proteínas Hedgehog/genética , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Embarazo , Transducción de Señal/fisiología , Factores de Tiempo , Uretra/embriología , Uretra/metabolismo , Uretra/fisiología
6.
Dev Biol ; 334(1): 133-41, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19616534

RESUMEN

The formation of supernumerary digits, or polydactyly, is a common congenital malformation. Although mutations in a number of genes have been linked to polydactyly, the molecular etiology for a third of human disorders with polydactyly remains unknown. To increase our understanding of the potential causes for polydactyly, we characterized a spontaneous chicken mutant, known as Dorking. The hindlimbs of Dorkings form a preaxial supernumerary digit. During the early stages of limb development, ectopic expression of several genes, including Sonic Hedgehog (Shh) and Fibroblast Growth Factor 4 (Fgf4), was found in Dorking hindlimbs. In addition to ectopic gene expression, a decrease in cell death in the anterior of the developing Dorking hindlimb was observed. Further molecular investigation revealed that ectopic Fgf4 expression was initiated and maintained independent of ectopic Shh. Additionally, inhibition of Fgf signaling but not hedgehog signaling was capable of restoring the normal anterior domain of cell death in Dorking hindlimbs. Our data indicates that in Dorking chickens, preaxial polydactyly is initiated independent of Shh.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Polidactilia/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Muerte Celular , Embrión de Pollo , Pollos/metabolismo , Hibridación in Situ , Polidactilia/embriología
7.
Dev Biol ; 327(2): 516-23, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19210962

RESUMEN

The apical ectodermal ridge (AER) in the vertebrate limb is required for limb outgrowth and patterning. To investigate the role BMP ligands expressed in the AER play in limb development we selectively inactivated both Bmp2 and Bmp4 in this tissue. The autopods of mice lacking both of these genes contained extra digits, digit bifurcations and interdigital webbing due to a decrease in programmed cell death and an increase in cell proliferation in the underlying mesoderm. Upon removal of Bmp2 and Bmp4 in the AER, no defects in proximal-distal patterning were observed. At the molecular level, removal of Bmp2 and Bmp4 in the AER caused an increase in Fgf expression, which correlated with an increase in both the width and length of the AER. Investigation of Engrailed-1 (En1) expression in the AER of limb buds in which Bmp2 and Bmp4 had been removed indicated that En1 expression was absent from this tissue. Our data suggests that AER expression of Bmp2 and Bmp4 is required for digit and dorsal-ventral patterning but surprisingly not for limb outgrowth.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Muerte Celular/fisiología , Ectodermo , Extremidades , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Proliferación Celular , Citocinas , Ectodermo/anatomía & histología , Ectodermo/fisiología , Extremidades/anatomía & histología , Extremidades/embriología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Deformidades Congénitas de las Extremidades , Masculino , Ratones , Transducción de Señal/fisiología
8.
Cell Cycle ; 13(14): 2165-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24914680

RESUMEN

While cell proliferation is an essential part of embryonic development, cells within an embryo cannot proliferate freely. Instead, they must balance proliferation and other cellular events such as differentiation and morphogenesis throughout embryonic growth. Although the G1 phase has been a major focus of study in cell cycle control, it is becoming increasingly clear that G2 regulation also plays an essential role during embryonic development. Here we discuss the role of Cdc25, a key regulator of mitotic entry, with a focus on several recent examples that show how the precise control of Cdc25 activity and the G2/M transition are critical for different aspects of embryogenesis. We finish by discussing a promising technology that allows easy visualization of embryonic and adult cells potentially regulated at mitotic entry, permitting the rapid identification of other instances where the exit from G2 plays an essential role in development and tissue homeostasis.


Asunto(s)
Proliferación Celular , Embrión de Mamíferos/enzimología , Embrión no Mamífero/enzimología , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis , Fosfatasas cdc25/metabolismo , Animales , Blástula/enzimología , Diferenciación Celular , Fase de Segmentación del Huevo/enzimología , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis , Transducción de Señal , Fosfatasas cdc25/genética
9.
Cell Res ; 22(12): 1621-3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22777423

RESUMEN

Proper control of intercellular communication through the Wnt signaling pathway is of critical importance for many aspects of biology, including head formation during vertebrate embryogenesis. A recent Cell paper describes the discovery of a novel protein, TIKI, which controls head size through a surprising new mechanism of Wnt antagonism.


Asunto(s)
Proteínas Wnt/metabolismo , Animales , Cabeza/fisiología , Metaloproteasas/genética , Metaloproteasas/metabolismo , Mutación , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , Vía de Señalización Wnt , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA