Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 11(6): e1005347, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26125563

RESUMEN

The childhood epileptic encephalopathies (EE's) are seizure disorders that broadly impact development including cognitive, sensory and motor progress with severe consequences and comorbidities. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dnm1 encodes dynamin 1, a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Dnm1Ftfl or "fitful" mice carry a spontaneous mutation in the mouse ortholog of DNM1 and recapitulate many of the disease features associated with human DNM1 patients, providing a relevant disease model of human EE's. In order to examine the cellular etiology of seizures and behavioral and neurological comorbidities, we engineered a conditional Dnm1Ftfl mouse model of DNM1 EE. Observations of Dnm1Ftfl/flox mice in combination with various neuronal subpopulation specific cre strains demonstrate unique seizure phenotypes and clear separation of major neurobehavioral comorbidities from severe seizures associated with the germline model. This demonstration of pleiotropy suggests that treating seizures per se may not prevent severe comorbidity observed in EE associated with dynamin-1 mutations, and is likely to have implications for other genetic forms of EE.


Asunto(s)
Dinamina I/genética , Epilepsia/genética , Animales , Conducta Animal , Modelos Animales de Enfermedad , Dinamina I/metabolismo , Electroencefalografía , Epilepsia/epidemiología , Epilepsia/mortalidad , Epilepsia/patología , Femenino , Eliminación de Gen , Humanos , Lactante , Síndrome de Lennox-Gastaut/epidemiología , Síndrome de Lennox-Gastaut/genética , Masculino , Ratones Mutantes , Neuronas/patología , Fenotipo , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatología , Espasmos Infantiles/epidemiología , Espasmos Infantiles/genética , Transmisión Sináptica
2.
J Neurosci ; 34(3): 705-16, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431429

RESUMEN

Synaptic vesicle recycling sustains high rates of neurotransmission at the ribbon-type active zones (AZs) of mouse auditory inner hair cells (IHCs), but its modes and molecular regulation are poorly understood. Electron microscopy indicated the presence of clathrin-mediated endocytosis (CME) and bulk endocytosis. The endocytic proteins dynamin, clathrin, and amphiphysin are expressed and broadly distributed in IHCs. We used confocal vglut1-pHluorin imaging and membrane capacitance (Cm) measurements to study the spatial organization and dynamics of IHC exocytosis and endocytosis. Viral gene transfer expressed vglut1-pHluorin in IHCs and targeted it to synaptic vesicles. The intravesicular pH was ∼6.5, supporting only a modest increase of vglut1-pHluorin fluorescence during exocytosis and pH neutralization. Ca(2+) influx triggered an exocytic increase of vglut1-pHluorin fluorescence at the AZs, around which it remained for several seconds. The endocytic Cm decline proceeded with constant rate (linear component) after exocytosis of the readily releasable pool (RRP). When exocytosis exceeded three to four RRP equivalents, IHCs additionally recruited a faster Cm decline (exponential component) that increased with the amount of preceding exocytosis and likely reflects bulk endocytosis. The dynamin inhibitor Dyngo-4a and the clathrin blocker pitstop 2 selectively impaired the linear component of endocytic Cm decline. A missense mutation of dynamin 1 (fitful) inhibited endocytosis to a similar extent as Dyngo-4a. We propose that IHCs use dynamin-dependent endocytosis via CME to support vesicle cycling during mild stimulation but recruit bulk endocytosis to balance massive exocytosis.


Asunto(s)
Membrana Celular/metabolismo , Clatrina/fisiología , Dinamina I/fisiología , Exocitosis/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Hidrazonas/farmacología , Naftoles/farmacología , Animales , Membrana Celular/efectos de los fármacos , Dinamina I/antagonistas & inhibidores , Dinamina I/genética , Exocitosis/efectos de los fármacos , Femenino , Células Ciliadas Auditivas Internas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Missense/fisiología , Órgano Espiral/citología , Órgano Espiral/metabolismo
3.
Nat Genet ; 37(7): 756-60, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15951820

RESUMEN

Errors in meiotic chromosome segregation are the leading cause of spontaneous abortions and birth defects. In humans, chromosomes that fail to experience crossovers (or exchanges) are error-prone, more likely than exchange chromosomes to mis-segregate in meiosis. We used a yeast model to investigate the mechanisms that partition nonexchange chromosomes. These studies showed that the spindle checkpoint genes MAD1, MAD2 and MAD3 have different roles. We identified a new meiotic role for MAD3; though dispensable for the segregation of exchange chromosomes, it is essential for the segregation of nonexchange chromosomes. This function of Mad3p could also be carried out by human BubR1. MAD1 and MAD2 act in a surveillance mechanism that mediates a metaphase delay in response to nonexchange chromosomes, whereas MAD3 acts as a crucial meiotic timer, mediating a prophase delay in every meiosis. These findings suggest plausible models for the basis of errant meiotic segregation in humans.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Fúngicos/genética , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica/genética , Cromosomas Fúngicos/metabolismo , Proteínas Fúngicas , Humanos , Proteínas Mad2 , Meiosis/genética , Proteínas Nucleares/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
4.
PLoS Genet ; 6(8)2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700442

RESUMEN

Dynamin-1 (Dnm1) encodes a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Mice heterozygous for a novel spontaneous Dnm1 mutation--fitful--experience recurrent seizures, and homozygotes have more debilitating, often lethal seizures in addition to severe ataxia and neurosensory deficits. Fitful is a missense mutation in an exon that defines the DNM1a isoform, leaving intact the alternatively spliced exon that encodes DNM1b. The expression of the corresponding alternate transcripts is developmentally regulated, with DNM1b expression highest during early neuronal development and DNM1a expression increasing postnatally with synaptic maturation. Mutant DNM1a does not efficiently self-assemble into higher order complexes known to be necessary for proper dynamin function, and it also interferes with endocytic recycling in cell culture. In mice, the mutation results in defective synaptic transmission characterized by a slower recovery from depression after trains of stimulation. The DNM1a and DNM1b isoform pair is highly conserved in vertebrate evolution, whereas invertebrates have only one isoform. We speculate that the emergence of more specialized forms of DNM1 may be important in organisms with complex neuronal function.


Asunto(s)
Dinamina I/genética , Epilepsia/genética , Exones , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Modelos Animales de Enfermedad , Dinamina I/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación Missense , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Transmisión Sináptica
5.
Hum Mol Genet ; 17(12): 1738-49, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18316356

RESUMEN

Absence epilepsy, characterized by spike-wave discharges (SWD) in the electroencephalogram, arises from aberrations within the circuitry of the cerebral cortex and thalamus that regulates awareness. The inbred mouse strain C3H/HeJ is prone to absence seizures, with a major susceptibility locus, spkw1, accounting for most of the phenotype. Here we find that spkw1 is associated with a hypomorphic retroviral-like insertion mutation in the Gria4 gene, encoding one of the four amino-3-hydroxy-5-methyl-4isoxazolepropionic acid (AMPA) receptor subunits in the brain. Consistent with this, Gria4 knockout mice also have frequent SWD and do not complement spkw1. In contrast, null mutants for the related gene Gria3 do not have SWD, and Gria3 loss actually lowers SWD of spkw1 homozygotes. Gria3 and Gria4 encode the predominant AMPA receptor subunits in the reticular thalamus, which is thought to play a central role in seizure genesis by inhibiting thalamic relay cells and promoting rebound burst firing responses. In Gria4 mutants, synaptic excitation of inhibitory reticular thalamic neurons is enhanced, with increased duration of synaptic responses-consistent with what might be expected from reduction of the kinetically faster subunit of AMPA receptors encoded by Gria4. These results demonstrate for the first time an essential role for Gria4 in the brain, and suggest that abnormal AMPA receptor-dependent synaptic activity can be involved in the network hypersynchrony that underlies absence seizures.


Asunto(s)
Epilepsia Tipo Ausencia/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Animales , Electroencefalografía , Epilepsia Tipo Ausencia/fisiopatología , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Datos de Secuencia Molecular , Sinapsis/fisiología , Tálamo/fisiología
6.
Neurol Genet ; 1(1): e4, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27066543

RESUMEN

OBJECTIVE: To elucidate the functional consequences of epileptic encephalopathy-causing de novo mutations in DNM1 (A177P, K206N, G359A), which encodes a large mechanochemical GTPase essential for neuronal synaptic vesicle endocytosis. METHODS: HeLa and COS-7 cells transfected with wild-type and mutant DNM1 constructs were used for transferrin assays, high-content imaging, colocalization studies, Western blotting, and electron microscopy (EM). EM was also conducted on the brain sections of mice harboring a middle-domain Dnm1 mutation (Dnm1 (Ftfl)). RESULTS: We demonstrate that the expression of each mutant protein decreased endocytosis activity in a dominant-negative manner. One of the G-domain mutations, K206N, decreased protein levels. The G359A mutation, which occurs in the middle domain, disrupted higher-order DNM1 oligomerization. EM of mutant DNM1-transfected HeLa cells and of the Dnm1 (Ftfl) mouse brain revealed vesicle defects, indicating that the mutations likely interfere with DNM1's vesicle scission activity. CONCLUSION: Together, these data suggest that the dysfunction of vesicle scission during synaptic vesicle endocytosis can lead to serious early-onset epilepsies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA