Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 105(34): 12491-6, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18719102

RESUMEN

Netrins are secreted molecules with roles in axon guidance and angiogenesis. We identified Netrin-4 as a gene specifically overexpressed in VEGF-stimulated endothelial cells (EC) in vitro as well as in vivo. Knockdown of Netrin-4 expression in EC increased their ability to form tubular structures on Matrigel. To identify which receptor is involved, we showed by quantitative RT-PCR that EC express three of the six Netrin-1 cognate receptors: neogenin, Unc5B, and Unc5C. In contrast to Netrin-1, Netrin-4 bound only to neogenin but not to Unc5B or Unc5C receptors. Neutralization of Netrin-4 binding to neogenin by blocking antibodies abolished the chemotactic effect of Netrin-4. Furthermore, the silencing of either neogenin or Unc5B abolished Netrin-4 inhibitory effect on EC migration, suggesting that both receptors are essential for its function in vitro. Coimmunoprecipitation experiments demonstrated that Netrin-4 increased the association between Unc5B and neogenin on VEGF- or FGF-2-stimulated EC. Finally, we showed that Netrin-4 significantly reduced pathological angiogenesis in Matrigel and laser-induced choroidal neovascularization models. Interestingly, Netrin-4, neogenin, and Unc5B receptor expression was up-regulated in choroidal neovessel EC after laser injury. Moreover, Netrin-4 overexpression delayed tumor angiogenesis in a model of s.c. xenograft. We propose that Netrin-4 acts as an antiangiogenic factor through binding to neogenin and recruitment of Unc5B.


Asunto(s)
Células Endoteliales/citología , Proteínas de la Membrana/metabolismo , Neovascularización Patológica , Factores de Crecimiento Nervioso/fisiología , Receptores de Superficie Celular/metabolismo , Animales , Bovinos , Línea Celular Tumoral , Células Cultivadas , Quimiotaxis , Femenino , Humanos , Rayos Láser/efectos adversos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/irrigación sanguínea , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Receptores de Netrina , Netrinas , Neoplasias de la Próstata/patología , Unión Proteica/fisiología , Proteínas Recombinantes/farmacología , Trasplante Heterólogo , Regulación hacia Arriba/genética
2.
Vasc Cell ; 6(1): 1, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24472220

RESUMEN

Netrins are secreted molecules involved in axon guidance and angiogenesis. We previously showed that Netrin-4 acts as an anti-angiogenic factor by inhibiting endothelial cell (EC) functions. In this study, we investigated the effects of Netrin-4 on vascular smooth muscle cell (VSMC) activity in vitro and in vivo. We show that exogenous Netrin-4 stimulated VSMC adhesion and migration, and increased their coverage on EC tubes (grown on a Matrigel substrate). siRNA knock-down of endogenous Netrin-4 expression in VSMC decreased their recruitment to EC tubes. VSMC expressed Netrin-4 and three of the six Netrin-1 cognate receptors: DCC, Neogenin, and Unc5B. Silencing of these receptors reduced Netrin-4 adhesion to VSMC, strongly suggesting that these receptors were involved in the recruitment process. We previously showed that Netrin-4 overexpression in PC3 cancer cells delayed tumor growth in a model of subcutaneous xenograft by reducing tumor vessel density. Here, we show that Netrin-4 overexpression improved tumor blood vessel structure and increased VSMC coverage. Thus, Netrin-4 induced mural cell recruitment may play a role in the inhibition of tumor growth. Our data suggest that Netrin-4 is important for blood vessel normalization through the regulation of both endothelial and perivascular cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA