Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 27(42): 425706, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27631689

RESUMEN

Electronic structure of a molecular beam epitaxy-grown system of (In,Mn)As quantum dots (QDs) buried in GaAs is explored with soft-x-ray angle-resolved photoelectron spectroscopy (ARPES) using photon energies around 1 keV. This technique, ideally suited for buried systems, extends the momentum-resolving capabilities of conventional ARPES with enhanced probing depth as well as elemental and chemical state specificity achieved with resonant photoexcitation. The experimental results resolve the dispersive energy bands of the GaAs substrate buried in ∼2 nm below the surface, and the impurity states (ISs) derived from the substitutional Mn atoms in the (In,Mn)As QDs and oxidized Mn atoms distributed near the surface. An energy shift of the Mn ISs in the QDs compared to (In,Mn)As DMS is attributed to the band offset and proximity effect at the interface with the surrounding GaAs. The absence of any ISs in the vicinity of the VBM relates the electron transport in (In,Mn)As QDs to the prototype (In,Mn)As diluted magnetic semiconductor. The SX-ARPES results are supported by measurements of the shallow core levels under variation of probing depth through photon energy. X-ray absorption measurements identify significant diffusion of interstitial Mn atoms out of the QDs towards the surface, and the role of magnetic circular dichroism is to block the ferromagnetic response of the (In,Mn)As QDs. Possible routes are drawn to tune the growth procedure aiming at practical applications of the (In,Mn)As based systems.

2.
Nanotechnology ; 23(26): 265402, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22699243

RESUMEN

We report on the growth and electro-optical studies of photovoltaic properties of GaAsP nanowires. Low density GaAsP nanowires were grown by Au assisted MOVPE on Si(001) substrates using a two step procedure to form a radial p-n junction. The STEM analyses show that the nanowires have cubic structure with the alloy composition GaAs0.88P0.12 in the nanowire core and GaAs0.76P0.24 in the shell. The nanowire ensembles were processed in the form of sub-millimeter size mesas. The photovoltaic properties were characterized by optical beam induced current (OBIC) and electronic beam induced current (EBIC) maps. Both OBIC and EBIC maps show that the photovoltage is generated by the nanowires; however, a strong signal variation from wire to wire is observed. Only one out of six connected nanowires produce a measurable signal. These strong fluctuations can be tentatively explained by the variation of the resistance of the nanowire-to-substrate connection, which is highly sensitive to the quality of the Si-GaAsP interface. This study demonstrates the importance of the spatially resolved charge collection microscopy techniques for the diagnosis of failures in nanowire photovoltaic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA