RESUMEN
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Predisposición Genética a la Enfermedad , Variación Genética , Neoplasias Ováricas/patología , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Femenino , Pruebas Genéticas , Genotipo , Humanos , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/genéticaRESUMEN
BACKGROUND: Mutations of the BRCA2 gene are the most frequent alterations found in germline DNA from men with prostate cancer (PrCa), but clinical parameters that could better orientate for BRCA2 mutation screening need to be established. METHODS: Germline DNA from 325 PrCa patients (median age at diagnosis: 57 years old) was screened for BRCA2 mutation. The mutation frequency was compared between three subgroups: patients with an age at diagnosis at 55 years old and under (Group I); a personal or family history of breast, uterine or ovarian cancer (Group II); or a metastatic disease (Group III). Frequency of BRCA2 mutations was established for each combination of phenotypes, and compared between patients meeting or not the criteria for each subgroup using Fisher's exact test. Mutual information, direct effect, elasticity and contribution to the mutational status of each phenotype, taking into account overlap between subgroups, were also estimated using Bayesian algorithms. RESULTS: The proportion of BRCA2 mutation was 5.9% in Group I, 10.9% in Group II and 6.9% in Group III. The frequency of BRCA2 mutation was significantly higher among patients of Group II (p = .006), and reached 15.6% among patients of this group who presented a metastatic disease. Mutual information, direct effect, elasticity and contribution to the mutational status were the highest for phenotype II. Fifteen (71.4%) of the 21 BRCA2 mutation carriers had an aggressive form of the disease. Four (19%) of them died from PrCa after a median follow-up duration of 64.5 months. CONCLUSIONS: Our results showed that a higher frequency of BRCA2 mutation carriers is observed, not only among PrCa patients with young onset or a metastatic disease, but also with a personal or a familial history of breast cancer.
Asunto(s)
Neoplasias de la Mama Masculina/genética , Genes BRCA2 , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Edad de Inicio , Teorema de Bayes , Neoplasias de la Mama Masculina/diagnóstico , Neoplasias de la Mama Masculina/secundario , Femenino , Pruebas Genéticas , Mutación de Línea Germinal , Síndrome de Cáncer de Mama y Ovario Hereditario/diagnóstico , Humanos , Masculino , Anamnesis , Persona de Mediana Edad , Metástasis de la Neoplasia/genética , Fenotipo , Neoplasias de la Próstata , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genéticaRESUMEN
Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).
Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Variación Genética , Sitios de Empalme de ARN/genética , Empalme del ARN , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Humanos , Cooperación Internacional , Internet , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The genetic predisposition to familial hematological malignancies has been previously reported highlighting inherited gene mutations. Several genes have been reported but genetic basis remains not well defined. In this study, we extended our investigation to a potential candidate GATA2 gene which was analyzed by direct sequencing in 119 cases including familial aggregations with a variety of hematological malignancies and sporadic acute leukemia belonging to Tunisian and French populations. We reported a deleterious p.Arg396Gln GATA2 mutation in one patient diagnosed with both sporadic acute myeloid leukemia (AML) and breast cancer. We also reported several GATA2 variations in familial cases. The absence of deleterious mutations in this large cohort of familial aggregations of hematological malignancies may strengthen the hypothesis that GATA2 mutations are an important predisposing factor, although as a secondary genetic event, required for the development of overt malignant disease.
Asunto(s)
Familia , Factor de Transcripción GATA2/genética , Neoplasias Hematológicas/genética , Leucemia Mieloide Aguda/genética , Mutación Missense , Proteínas de Neoplasias/genética , Sustitución de Aminoácidos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Femenino , Francia/epidemiología , Predisposición Genética a la Enfermedad , Neoplasias Hematológicas/epidemiología , Humanos , Leucemia Mieloide Aguda/epidemiología , Masculino , Túnez/epidemiologíaRESUMEN
Isocitrate dehydrogenase IDH 1 and IDH 2 mutations were reported in several cancer forms, especially in hematological malignancies, but were never been investigated in familial aggregation. The aim of this study is to determine whether germline isocitrate dehydrogenase genes mutations are involved.We targeted IDH1 and IDH2 genes in 104 familial cases belonging to Tunisian and French populations, including several forms of hematological malignancies and cosegregated solid tumors.We report one IDH1 variant: c.315 G>T, p.Gly105Gly in 15 % of cases, which was assigned to the worst outcome in several studies. Three IDH2 variants were found, among them, one intronic substitution c.543+45 G>A (rs142033117) and two new variants not previously described: c.389 A>T, p.Lys130Met and c.414 T>C, p.Thr138Thr. The p.Lys130Met was found in one case diagnosed with Waldenstrom's disease with familial history of cancer. The enrolled in silico analysis, the functional study, and the absence of this variant in control population strengthen the hypothesis of its deleterious effect.From an extended number of candidate genes analyzed in familial hematological malignancies, IDH2 might be considerably involved since we reported a potential damaging effect.
Asunto(s)
Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Isocitrato Deshidrogenasa/genética , Mutación/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Familial aggregation of hematological malignancies has been reported highlighting inherited genetic predisposition. In this study, we targeted four candidate genes: JAK2 and RUNX1 genes assuring a prominent function in hematological process and CBL and NPM1 as proto-oncogenes. Their disruption was described in several sporadic hematological malignancies. The aim of this study is to determine whether JAK2, CBL, RUNX1, and NPM1 germline genes mutations are involved in familial hematological malignancies. Using direct sequencing, we analyzed JAK2 (exons 12 and 14); CBL (exons 7, 8 and 9); NPM1 (exon 12) and the entire RUNX1 in 88 independent families belonging to Tunisian and French populations. Twenty-one sporadic acute leukemias were included in this study. We reported a heterozygous intronic c.1641 + 6 T > C JAK2 variant (rs182123615) found in two independent familial cases diagnosed with gastric lymphoma and Hodgkin lymphoma. The in silico analysis suggested a potential impact on splicing, but the functional splicing minigene reporter assay on rs182123615 variant showed no aberrant transcripts. In one sporadic acute myeloblastic leukemia, we reported an insertion 846 in. TGTT in exon 12 of NPM1 gene that may impact the normal reading frame. The rs182123615 JAK2 variant was described in several contexts including myeloproliferative neoplasms and congenital erythrocytosis and was supposed to be pathogenic. Through this current study, we established the assessment of pathogenicity of rs182123615 and we classified it rather as rare polymorphism.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Análisis Mutacional de ADN/métodos , Neoplasias Hematológicas/genética , Janus Quinasa 2/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Adolescente , Adulto , Anciano , Estudios de Cohortes , Femenino , Variación Genética/genética , Neoplasias Hematológicas/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Nucleofosmina , LinajeRESUMEN
Family structure, lack of reliable information, cost, and delay are usual concerns when deciding to perform BRCA analyses. Testing breast cancer tissues with four antibodies (MS110, lys27H3, vimentin, and KI67) in addition to grade evaluation enabled us to rapidly select patients for genetic testing identification. We constituted an initial breast cancer tissue microarray, considered as a learning set, comprising 27 BRCA1 and 81 sporadic tumors. A second independent validation set of 28 BRCA1 tumors was matched to 28 sporadic tumors using the same original conditions. We investigated morphological parameters and 21 markers by immunohistochemistry. A logistic regression model was used to select the minimal number of markers providing the best model to predict BRCA1 status. The model was applied to the validation set to estimate specificity and sensibility. In the initial set, univariate analyses identified 11 markers significantly associated with BRCA1 status. Then, the best multivariate model comprised only grade 3, MS110, Lys27H3, vimentin, and KI67. When applied to the validation set, BRCA1 tumors were correctly classified with a sensitivity of 83% and a specificity of 81%. The performance of this model was superior when compared to other profiles. This study offers a new rapid and cost-effective method for the prescreening of patients at high risk of being BRCA1 mutation carriers, to guide genetic testing, and finally to provide appropriate preventive measures, advice, and treatments including targeted therapy to patients and their families.
Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/diagnóstico , Mutación de Línea Germinal , Histonas/análisis , Antígeno Ki-67/análisis , Vimentina/análisis , Proteína BRCA1/análisis , Neoplasias de la Mama/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Inmunohistoquímica , Modelos Logísticos , Lisina , Análisis Multivariante , Clasificación del Tumor , Selección de Paciente , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Análisis de Matrices TisularesRESUMEN
Assessing the impact of variants of unknown significance (VUS) on splicing is a key issue in molecular diagnosis. This impact can be predicted by in silico tools, but proper evaluation and user guidelines are lacking. To fill this gap, we embarked upon the largest BRCA1 and BRCA2 splice study to date by testing 272 VUSs (327 analyses) within the BRCA splice network of Unicancer. All these VUSs were analyzed by using six tools (splice site prediction by neural network, splice site finder (SSF), MaxEntScan (MES), ESE finder, relative enhancer and silencer classification by unanimous enrichment, and human splicing finder) and the predictions obtained were compared with transcript analysis results. Combining MES and SSF gave 96% sensitivity and 83% specificity for VUSs occurring in the vicinity of consensus splice sites, that is, the surrounding 11 and 14 bases for the 5' and 3' sites, respectively. This study was also an opportunity to define guidelines for transcript analysis along with a tentative classification of splice variants. The guidelines drawn from this large series should be useful for the whole community, particularly in the context of growing sequencing capacities that require robust pipelines for variant interpretation.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Patología Molecular/métodos , Patología Molecular/normas , Empalme del ARN/genética , Exones/genética , Femenino , HumanosRESUMEN
Familial platelet disorder (FPD), a rare autosomal dominant disorder characterized by quantitative and qualitative platelet abnormalities, is considered as a model of genetic predisposition to acute myeloid leukemia (AML). So far, monoallelic RUNX1 germline mutations have been found in 19 of 20 families with reported FPD, and the analysis of blast cells from only 5 patients at acute leukemia (AL) stage has shown no additional RUNX1 abnormality. Here, we performed RUNX1 analysis at constitutional and somatic levels in 8 persons with FPD who developed AL from 4 independent families. In addition to the germline RUNX1 mutation, we identified a second RUNX1 alteration in 6 AML cases (acquired point mutations in 4 cases and duplication of the altered RUNX1 allele associated with acquired trisomy 21 in 2 other cases). Although haploinsufficiency of RUNX1 causes FPD, our findings suggest that a second genetic event involving RUNX1 is often associated with progression to AML.
Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Adulto , Trastornos de las Plaquetas Sanguíneas/complicaciones , Niño , Familia , Femenino , Frecuencia de los Genes , Homocigoto , Humanos , Leucemia Mieloide Aguda/etiología , Masculino , Persona de Mediana Edad , Linaje , Lesiones Precancerosas/genética , Adulto JovenRESUMEN
BACKGROUND: Schwannomatosis is a disease characterized by multiple non-vestibular schwannomas. Although biallelic NF2 mutations are found in schwannomas, no germ line event is detected in schwannomatosis patients. In contrast, germline mutations of the SMARCB1 (INI1) tumor suppressor gene were described in familial and sporadic schwannomatosis patients. METHODS: To delineate the SMARCB1 gene contribution, the nine coding exons were sequenced in a series of 56 patients affected with a variable number of non-vestibular schwannomas. RESULTS: Nine variants scattered along the sequence of SMARCB1 were identified. Five of them were classified as deleterious. All five patients carrying a SMARCB1 mutation had more multiple schwannomas, corresponding to 10.2% of patients with schwannomatosis. They were also diagnosed before 35 years of age. CONCLUSIONS: These results suggest that patients with schwannomas have a significant probability of carrying a SMARCB1 mutation. Combined with data available from other studies, they confirm the clinical indications for genetic screening of the SMARCB1 gene.
Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal/genética , Factores de Transcripción/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Exones/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Neurilemoma/genética , Neurofibromatosis/genética , Proteína SMARCB1 , Análisis de Secuencia de ADN/métodos , Neoplasias Cutáneas/genéticaRESUMEN
Heterozygous APC germline alteration is responsible for familial adenomatous polyposis, a colon cancer predisposition with almost complete penetrance. Point mutations generally lead to truncated proteins or no protein at all. They mainly involve exon 3 to codon 1700 (exon 15). The work presented here delineates precisely the APC mutation spectrum from 15 years of systematic molecular screening which identified 863 independent alterations in the French population.
Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Análisis Mutacional de ADN/métodos , Mutación de Línea Germinal , Hibridación Genómica Comparativa , Francia , Genes APC , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Mutación Puntual , Análisis de Secuencia de ADNRESUMEN
INTRODUCTION: Apoptosis deregulation have been associated to tumorigenesis process and was highlighted as a prominent hallmark of cancer. Several mutations have been reported in several forms of Blood cancer. However, it has never been investigated in familial aggregations of hematological malignancies. METHODS: In this study, we performed a mutational analysis by sequencing the entire coding regions in four key apoptotic genes FAS, FASLG, CASP8 and CASP10 in 92 independent families belonging to French and Tunisian populations and diagnosed with several forms of familial hematological malignancies. RESULTS: We report 15 genetic variations among which 7 were previously reported in several form of cancers and have a potential effect on gene expression. Particularly, the CASP8 variants p.Asp302His and p.Lys337Lys were detected in 15% and 10% of our group of patients respectively and were previously reported in association to breast cancer and to breast cancer susceptibility. DISCUSSION: In this study, we do not report the underlining deleterious mutations in familial hematological malignancies, but we describe some variants with potential risk of developing blood cancer. To gain further insights on the association between apoptosis pathway deregulation and familial hematological malignancies, more apoptotic genes should be investigated.
Asunto(s)
Apoptosis/genética , Caspasa 10/genética , Caspasa 8/genética , Proteína Ligando Fas/genética , Neoplasias Hematológicas/genética , Receptor fas/genética , Alelos , Estudios Transversales , Análisis Mutacional de ADN/métodos , Familia , Francia , Predisposición Genética a la Enfermedad , Humanos , Intrones , Mutación Missense , Perforina/genética , TúnezRESUMEN
BACKGROUND: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5' region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. METHODS: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. RESULTS: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. CONCLUSIONS: Taken together, our results firmly establish that the BRCA1 5' region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.
RESUMEN
Germline nonsense and canonical splice site variants identified in disease-causing genes are generally considered as loss-of-function (LoF) alleles and classified as pathogenic. However, a fraction of such variants could maintain function through their impact on RNA splicing. To test this hypothesis, we used the alternatively spliced BRCA2 exon 12 (E12) as a model system because its in-frame skipping leads to a potentially functional protein. All E12 variants corresponding to putative LoF variants or predicted to alter splicing (n = 40) were selected from human variation databases and characterized for their impact on splicing in minigene assays and, when available, in patient lymphoblastoid cell lines. Moreover, a selection of variants was analyzed in a mouse embryonic stem cell-based functional assay. Using these complementary approaches, we demonstrate that a subset of variants, including nonsense variants, induced in-frame E12 skipping through the modification of splice sites or regulatory elements and, consequently, led to an internally deleted but partially functional protein. These data provide evidence, for the first time in a cancer-predisposition gene, that certain presumed null variants can retain function due to their impact on splicing. Further studies are required to estimate cancer risk associated with these hypomorphic variants. More generally, our findings highlight the need to exercise caution in the interpretation of putative LoF variants susceptible to induce in-frame splicing modifications. SIGNIFICANCE: This study presents evidence that certain presumed loss-of-function variants in a cancer predisposition gene can retain function due to their direct impact on RNA splicing.
Asunto(s)
Empalme Alternativo , Proteína BRCA2/genética , Predisposición Genética a la Enfermedad , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Exones/genética , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/genéticaRESUMEN
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Asunto(s)
Neoplasias de la Mama/genética , Genes BRCA2 , Predisposición Genética a la Enfermedad/genética , Neoplasias Ováricas/genética , Empalme Alternativo , Animales , Exones , Femenino , Humanos , Ratones , Isoformas de ProteínasRESUMEN
Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Análisis Mutacional de ADN/métodos , Mutación de Línea Germinal/genética , Proteínas Nucleares/genética , Desnaturalización de Ácido Nucleico , Mutación Puntual/genética , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN/metabolismo , Exones/genética , Reordenamiento Génico , Humanos , Homólogo 1 de la Proteína MutL , Hibridación de Ácido Nucleico , Estándares de ReferenciaRESUMEN
Mutations are responsible for familial cancer syndromes which account for approximately 5-10 % of all types of cancers. Familial cancers are often caused by genetic alterations occurring either in tumor suppressor or genomic stability genes such as TP53. In this study, we have analyzed the TP53 gene by direct sequencing approach, in a panel of 18 Tunisian familial hematological malignancies cases including several forms of leukemia, lymphoma and myeloid syndrome and 22 cases of sporadic acute leukemia. In one familial case diagnosed with acute lymphoblastic leukemia, we reported an intronic substitution 559+1 G>A which may disrupt the splice site and impact the normal protein function. Most of the deleterious mutations (Arg158His; Pro282Trp; Thr312Ser) as classified by IARC data base, were commonly reported in ALL cases studied here. The cosegregation of the two variants rs1042522 and rs1642785 was observed in most patients which may be in favor of the presence of linkage disequilibrium. The most defined TP53 mutations found here were identified in acute lymphoblastic leukemia context whereas only 3 % of mutations have been in previous studies. The cosegregation of the two recurrent variant rs1042522 and rs1642785 should be further confirmed.
Asunto(s)
Neoplasias Hematológicas/genética , Leucemia/genética , Mutación , Proteína p53 Supresora de Tumor/genética , Análisis Mutacional de ADN , Humanos , Linaje , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , TúnezRESUMEN
INTRODUCTION: Genetic predisposition to familial hematological malignancies was previously described through several epidemiological analyses, but the genetic basis remains unclear. The tumor-suppressor ARLTS1 gene was previously described in sporadic hematological malignancies and familial cancer context. METHODS: In this study, we sequence the ARLTS1 gene in 100 patients belonging to 88 independent Tunisian and French families. RESULTS: After gene sequencing, we report 8 genetic variations, most of which were previously reported in several cancer forms. The most common variants were W149X and C148R and were previously associated to B-cell chronic lymphocytic leukemia and to high-risk of familial breast cancer. CONCLUSIONS: These results emphasize the fact that ARLTS1 gene mutations can be considered as a potential predisposing factor in familial hematological malignancies and other several cancer forms.