Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mutat ; 42(7): 827-834, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942450

RESUMEN

Mental deficiency, epilepsy, hypogonadism, microcephaly, and obesity syndrome is a severe X-linked syndrome caused by pathogenic variants in EIF2S3. The gene encodes the γ subunit of the eukaryotic translation initiation factor-2, eIF2, essential for protein translation. A recurrent frameshift variant is described in severely affected patients while missense variants usually cause a moderate phenotype. We identified a novel missense variant (c.433A>G, p.(Met145Val)) in EIF2S3 in a mildly affected patient. Studies on zebrafish confirm the pathogenicity of this novel variant and three previously published missense variants. CRISPR/Cas9 knockout of eif2s3 in zebrafish embryos recapitulate the human microcephaly and show increased neuronal cell death. Abnormal high glucose levels were identified in mutant embryos, caused by beta cell and pancreatic progenitor deficiency, not related to apoptosis. Additional studies in patient-derived fibroblasts did not reveal apoptosis. Our results provide new insights into disease physiopathology, suggesting tissue-dependent mechanisms.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Pez Cebra , Animales , Genitales , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Fenotipo , Pez Cebra/genética
2.
Wound Repair Regen ; 26(2): 238-244, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29663654

RESUMEN

The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.


Asunto(s)
Metronidazol/metabolismo , Nitrofuranos/metabolismo , Nitrorreductasas/metabolismo , Regeneración/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Metronidazol/farmacología , Modelos Animales , Nitrofuranos/farmacología , Nitrorreductasas/genética , Regeneración/efectos de los fármacos
3.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060900

RESUMEN

Restoring damaged ß-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study ß-cells arising following destruction. We show that most new insulin cells differ from the original ß-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to ß-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in ß-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following ß-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-ß identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animales , Femenino , Masculino , Páncreas/citología , Somatostatina/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA