Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31852780

RESUMEN

The phosphoprotein (P) of the nonsegmented negative-sense RNA viruses is a multimeric modular protein that is essential for RNA transcription and replication. Despite great variability in length and sequence, the architecture of this protein is conserved among the different viral families, with a long N-terminal intrinsically disordered region comprising a nucleoprotein chaperone module, a central multimerization domain (PMD), connected by a disordered linker to a C-terminal nucleocapsid-binding domain. The P protein of vesicular stomatitis virus (VSV) forms dimers, and here we investigate the importance of its dimerization domain, PMD, for viral gene expression and virus growth. A truncated P protein lacking the central dimerization domain (PΔMD) loses its ability to form dimers both in vitro and in a yeast two-hybrid system but conserves its ability to bind N. In a minireplicon system, the truncated monomeric protein performs almost as well as the full-length dimeric protein, while a recombinant virus harboring the same truncation in the P protein has been rescued and follows replication kinetics similar to those seen with the wild-type virus, showing that the dimerization domain of P is dispensable for viral gene expression and virus replication in cell culture. Because RNA viruses have high mutation rates, it is unlikely that a structured domain such as a VSV dimerization domain would persist in the absence of a function(s), but our work indicates that it is not required for the functioning of the RNA polymerase machinery or for the assembly of new viruses.IMPORTANCE The phosphoprotein (P) is an essential and conserved component of all nonsegmented negative-sense RNA viruses, including some major human pathogens (e.g., rabies virus, measles virus, respiratory syncytial virus [RSV], Ebola virus, and Nipah virus). P is a modular protein with intrinsically disordered regions and folded domains that plays specific and similar roles in the replication of the different viruses and, in some cases, hijacks cell components to the advantage of the virus and is involved in immune evasion. All P proteins are multimeric, but the role of this multimerization is still unclear. Here, we demonstrate that the dimerization domain of VSV P is dispensable for the expression of virally encoded proteins and for virus growth in cell culture. This provides new insights into and raises questions about the functioning of the RNA-synthesizing machinery of the nonsegmented negative-sense RNA viruses.


Asunto(s)
Fosfoproteínas/química , Dominios Proteicos , Multimerización de Proteína , Virus de la Estomatitis Vesicular Indiana/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Dimerización , Modelos Moleculares , Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/genética , Unión Proteica , Conformación Proteica , Multimerización de Proteína/genética , ARN Viral/genética , Alineación de Secuencia , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/crecimiento & desarrollo , Replicación Viral
2.
Biophys J ; 118(10): 2470-2488, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32348724

RESUMEN

The structural characterization of modular proteins containing long intrinsically disordered regions intercalated with folded domains is complicated by their conformational diversity and flexibility and requires the integration of multiple experimental approaches. Nipah virus (NiV) phosphoprotein, an essential component of the viral RNA transcription/replication machine and a component of the viral arsenal that hijacks cellular components and counteracts host immune responses, is a prototypical model for such modular proteins. Curiously, the phosphoprotein of NiV is significantly longer than the corresponding protein of other paramyxoviruses. Here, we combine multiple biophysical methods, including x-ray crystallography, NMR spectroscopy, and small angle x-ray scattering, to characterize the structure of this protein and provide an atomistic representation of the full-length protein in the form of a conformational ensemble. We show that full-length NiV phosphoprotein is tetrameric, and we solve the crystal structure of its tetramerization domain. Using NMR spectroscopy and small angle x-ray scattering, we show that the long N-terminal intrinsically disordered region and the linker connecting the tetramerization domain to the C-terminal X domain exchange between multiple conformations while containing short regions of residual secondary structure. Some of these transient helices are known to interact with partners, whereas others represent putative binding sites for yet unidentified proteins. Finally, using NMR spectroscopy and isothermal titration calorimetry, we map a region of the phosphoprotein, comprising residues between 110 and 140 and common to the V and W proteins, that binds with weak affinity to STAT1 and confirm the involvement of key amino acids of the viral protein in this interaction. This provides new, to our knowledge, insights into how the phosphoprotein and the nonstructural V and W proteins of NiV perform their multiple functions.


Asunto(s)
Virus Nipah , Fosfoproteínas , Conformación Proteica , Proteínas Virales , Replicación Viral
3.
Proc Natl Acad Sci U S A ; 110(16): 6394-9, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23550162

RESUMEN

Tight regulation of collagen fibril deposition in the extracellular matrix is essential for normal tissue homeostasis and repair, defects in which are associated with several degenerative or fibrotic disorders. A key regulatory step in collagen fibril assembly is the C-terminal proteolytic processing of soluble procollagen precursors. This step, carried out mainly by bone morphogenetic protein-1/tolloid-like proteinases, is itself subject to regulation by procollagen C-proteinase enhancer proteins (PCPEs) which can dramatically increase bone morphogenetic protein-1/tolloid-like proteinase activity, in a substrate-specific manner. Although it is known that this enhancing activity requires binding of PCPE to the procollagen C-propeptide trimer, identification of the precise binding site has so far remained elusive. Here, use of small-angle X-ray scattering provides structural data on this protein complex indicating that PCPE binds to the stalk region of the procollagen C-propeptide trimer, where the three polypeptide chains associate together, at the junction with the base region. This is supported by site-directed mutagenesis, which identifies two highly conserved, surface-exposed lysine residues in this region of the trimer that are essential for binding, thus revealing structural parallels with the interactions of Complement C1r/C1s, Uegf, BMP-1 (CUB) domain-containing proteins in diverse biological systems such as complement activation, receptor signaling, and transport. Together with detailed kinetics and interaction analysis, these results provide insights into the mechanism of action of PCPEs and suggest clear strategies for the development of novel antifibrotic therapies.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Colágeno Tipo III/metabolismo , Matriz Extracelular/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Sitios de Unión/genética , Proteína Morfogenética Ósea 1/genética , Cromatografía en Gel , Dicroismo Circular , Colágeno Tipo III/genética , Electroforesis en Gel de Poliacrilamida , Proteínas de la Matriz Extracelular , Glicoproteínas , Células HEK293 , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie
4.
Hum Mutat ; 35(11): 1330-41, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25146735

RESUMEN

The type I procollagen carboxyterminal(C-)propeptides are crucial in directing correct assembly of the procollagen heterotrimers. Defects in these domains have anecdotally been reported in patients with Osteogenesis Imperfecta (OI) and few genotype-phenotype correlations have been described. To gain insight in the functional consequences of C-propeptide defects, we performed a systematic review of clinical, molecular, and biochemical findings in all patients in whom we identified a type I procollagen C-propeptide defect, and compared this with literature data. We report 30 unique type I procollagen C-propeptide variants, 24 of which are novel. The outcome of COL1A1 nonsense and frameshift variants depends on the location of the premature termination codon. Those located prior to 50-55 nucleotides upstream of the most 3' exon-exon junction lead to nonsense-mediated mRNA decay (NMD) and cause mild OI. Those located beyond this boundary escape NMD, generally lead to production of stable, overmodified procollagen chains, which may partly be retained intracellularly, and are usually associated with severe-to-lethal OI. Proα1(I)-C-propeptide defects that permit chain association result in more severe phenotypes than those inhibiting chain association. We demonstrate that the crystal structure of the proα1(III)-C-propeptide is a reliable tool to predict phenotypic severity for most COL1A1-C-propeptide missense variants, whereas for COL1A2-C-propeptide variants, the phenotypic outcome is milder than predicted.


Asunto(s)
Colágeno Tipo I/genética , Estudios de Asociación Genética , Fragmentos de Péptidos/deficiencia , Fragmentos de Péptidos/genética , Procolágeno , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Colágeno Tipo I/química , Cadena alfa 1 del Colágeno Tipo I , Exones , Genotipo , Humanos , Mutación INDEL , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Osteogénesis Imperfecta/genética , Fragmentos de Péptidos/química , Fenotipo , Conformación Proteica , Alineación de Secuencia , Relación Estructura-Actividad
5.
J Mol Biol ; : 168667, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901640

RESUMEN

The excessive deposition of fibrillar collagens is a hallmark of fibrosis. Collagen fibril formation requires proteolytic maturations by Procollagen N- and C-proteinases (PNPs and PCPs) to remove the N- and C-propeptides which maintain procollagens in the soluble form. Procollagen C-Proteinase Enhancer-1 (PCPE-1, a glycoprotein composed of two CUB and one NTR domains) is a regulatory protein that activates the C-terminal processing of procollagens by the main PCPs. It is often up-regulated in fibrotic diseases and represents a promising target for the development of novel anti-fibrotic strategies. Here, our objective was to develop the first antagonists of PCPE-1, based on the nanobody scaffold. Using both an in vivo selection through the immunization of a llama and an in vitro selection with a synthetic library, we generated 18 nanobodies directed against the CUB domains of PCPE1, which carry its enhancing activity. Among them, I5 from the immune library and H4 from the synthetic library have a high affinity for PCPE-1 and inhibit its interaction with procollagens. The crystal structure of the complex formed by PCPE-1, H4 and I5 showed that they have distinct epitopes and enabled the design of a biparatopic fusion, the diabody diab-D1. Diab-D1 has a sub-nanomolar affinity for PCPE-1 and is a potent antagonist of its activity, preventing the stimulation of procollagen cleavage in vitro. Moreover, Diab-D1 is also effective in reducing the proteolytic maturation of procollagen I in cultures of human dermal fibroblasts and hence holds great promise as a tool to modulate collagen deposition in fibrotic conditions.

6.
J Biol Chem ; 287(40): 33581-93, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22825851

RESUMEN

BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Glicoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Metaloproteinasas de la Matriz/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Resonancia por Plasmón de Superficie , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo
7.
Biomolecules ; 13(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36979390

RESUMEN

The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.


Asunto(s)
Virus Nipah , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Virus Nipah/genética , Virus Nipah/metabolismo , Inmunidad Innata , ARN/metabolismo
8.
J Biol Chem ; 286(45): 38932-8, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21940633

RESUMEN

Bone morphogenetic protein-1 (BMP-1) and the tolloid-like metalloproteinases control several aspects of embryonic development and tissue repair. Unlike other proteinases whose activities are regulated mainly by endogenous inhibitors, regulation of BMP-1/tolloid-like proteinases relies mostly on proteins that stimulate activity. Among these, procollagen C-proteinase enhancers (PCPEs) markedly increase BMP-1/tolloid-like proteinase activity on fibrillar procollagens, in a substrate-specific manner. Here, we performed a detailed quantitative study of the binding of PCPE-1 and of its minimal active fragment (CUB1-CUB2) to three regions of the procollagen III molecule: the triple helix, the C-telopeptide, and the C-propeptide. Contrary to results described elsewhere, we found the PCPE-1-binding sites to be located exclusively in the C-propeptide region. In addition, binding and enhancing activities were found to be independent of the glycosylation state of the C-propeptide. These data exclude previously proposed mechanisms for the action of PCPEs and also suggest new mechanisms to explain how these proteins can stimulate BMP-1/tolloid-like proteinases by up to 20-fold.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Colágeno Tipo III/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sitios de Unión , Proteína Morfogenética Ósea 1/genética , Línea Celular Transformada , Colágeno Tipo III/genética , Proteínas de la Matriz Extracelular/genética , Glicoproteínas/genética , Humanos , Estructura Secundaria de Proteína
9.
Virologie (Montrouge) ; 16(4): 225-257, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065883

RESUMEN

Viruses with a non-segmented negative-sense RNA genome, or Mononegavirales, are important pathogens for plants, animals and humans with major socio-economic and health impacts. Among them are well-known human pathogens such as measles, mumps and respiratory syncytial virus. Moreover, animal reservoirs appear much larger than previously thought, hence broadening the risk of emergence of life-threatening zoonotic viruses such as Rabies, Ebola, Marburg, Nipah or Hendra related viruses. These viruses have peculiar transcription and replication machinery that make them unique in the living world. Indeed, their genomic RNA, when naked, is non-infectious because it can be neither transcribed nor translated, and the L RNA-dependent RNA-polymerase is at best able to initiate the synthesis of an RNA copy of a few of tens of nucleotides in length. To serve as a template, the genomic RNA must be encapsidated in a helicoidal homopolymer made of a regular and continuous array of docked N protomers in which the ribose-phosphate backbone is fully embedded. This complex, or nucleocapsid, is recognized by the L polymerase thanks to its cofactor, the P protein, to sequentially transcribe the five genes into five processed mRNAs for the simplest viruses. Subsequently, a switch occurs and the polymerase replicates a full copy of antigenomic RNA that is concurrently encapsidated. This new template is then used for the production of new infectious genomic nucleocapsids. This review summarizes current structural, dynamic and functional data of this peculiar molecular machinery and provides a unified model of how it can function. It illuminates the overall common strategies and the subtle variations in the different viruses, along with the key role of the dual ordered/disordered structure of the protein components in the dynamics of the viral polymerase machinery.

10.
Viruses ; 14(12)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560817

RESUMEN

As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (NNT-ARM), and a peptide encompassing the N0 chaperon module of the P protein. We showed that the chaperone module undergoes a disordered-order transition when it assembles with N0 and measured an affinity in the low nanomolar range using a competition assay. We solved the crystal structure of the complex at a resolution of 2.3 Å, unveiling the details of the conserved interfaces. MD simulations showed that both the chaperon module of P and RNA-mediated polymerization reduced the ability of the RNA binding cavity to open and close. Finally, by reconstituting a complex with full-length P protein, we demonstrated that each P dimer could independently chaperon two N0 molecules.


Asunto(s)
Virus de la Rabia , Virus de la Rabia/genética , Nucleoproteínas/metabolismo , Unión Proteica , Proteínas de la Nucleocápside/genética , Chaperonas Moleculares/metabolismo , Fosfoproteínas/genética , ARN/metabolismo , ARN Viral/metabolismo
11.
J Mol Biol ; 434(10): 167551, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35317998

RESUMEN

To understand the dynamic interactions between the phosphoprotein (P) and the nucleoprotein (N) within the transcription/replication complex of the Paramyxoviridae and to decipher their roles in regulating viral multiplication, we characterized the structural properties of the C-terminal X domain (PXD) of Nipah (NiV) and Hendra virus (HeV) P protein. In crystals, isolated NiV PXD adopted a two-helix dimeric conformation, which was incompetent for binding its partners, but in complex with the C-terminal intrinsically disordered tail of the N protein (NTAIL), it folded into a canonical 3H bundle conformation. In solution, SEC-MALLS, SAXS and NMR spectroscopy experiments indicated that both NiV and HeV PXD were larger in size than expected for compact proteins of the same molecular mass and were in conformational exchange between a compact three-helix (3H) bundle and partially unfolded conformations, where helix α3 is detached from the other two. Some measurements also provided strong evidence for dimerization of NiV PXD in solution but not for HeV PXD. Ensemble modeling of experimental SAXS data and statistical-dynamical modeling reconciled all these data, yielding a model where NiV and HeV PXD exchanged between different conformations, and where NiV but not HeV PXD formed dimers. Finally, recombinant NiV comprising a chimeric P carrying HeV PXD was rescued and compared with parental NiV. Experiments carried out in cellula demonstrated that the replacement of PXD did not significantly affect the replication dynamics while caused a slight virus attenuation, suggesting a possible role of the dimerization of NiV PXD in viral replication.


Asunto(s)
Virus Hendra , Virus Nipah , Proteínas de la Nucleocápside , Fosfoproteínas , Proteínas Virales , Replicación Viral , Virus Hendra/genética , Virus Hendra/fisiología , Humanos , Virus Nipah/genética , Virus Nipah/fisiología , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteínas Virales/química , Proteínas Virales/genética , Difracción de Rayos X
12.
Sci Rep ; 12(1): 14850, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050373

RESUMEN

Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Proteínas de Xenopus , Proteína Morfogenética Ósea 1/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas de Xenopus/metabolismo
13.
Viruses ; 14(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36366462

RESUMEN

Determining the structural organisation of viral replication complexes and unravelling the impact of infection on cellular homeostasis represent important challenges in virology. This may prove particularly useful when confronted with viruses that pose a significant threat to human health, that appear unique within their family, or for which knowledge is scarce. Among Mononegavirales, bornaviruses (family Bornaviridae) stand out due to their compact genomes and their nuclear localisation for replication. The recent recognition of the zoonotic potential of several orthobornaviruses has sparked a surge of interest in improving our knowledge on this viral family. In this work, we provide a complete analysis of the structural organisation of Borna disease virus 1 (BoDV-1) phosphoprotein (P), an important cofactor for polymerase activity. Using X-ray diffusion and diffraction experiments, we revealed that BoDV-1 P adopts a long coiled-coil α-helical structure split into two parts by an original ß-strand twist motif, which is highly conserved across the members of whole Orthobornavirus genus and may regulate viral replication. In parallel, we used BioID to determine the proximal interactome of P in living cells. We confirmed previously known interactors and identified novel proteins linked to several biological processes such as DNA repair or mRNA metabolism. Altogether, our study provides important structure/function cues, which may improve our understanding of BoDV-1 pathogenesis.


Asunto(s)
Virus de la Enfermedad de Borna , Bornaviridae , Animales , Humanos , Virus de la Enfermedad de Borna/genética , Fosfoproteínas/genética , Bornaviridae/genética , Reparación del ADN , ADN , ARN Mensajero/genética
14.
J Biol Chem ; 284(48): 33437-46, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19801683

RESUMEN

Procollagen C-proteinase enhancers (PCPE-1 and -2) specifically activate bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family during C-terminal processing of fibrillar collagen precursors. PCPEs consist of two CUB domains (CUB1 and CUB2) and one NTR domain separated by one short and one long linker. It was previously shown that PCPEs can strongly interact with procollagen molecules, but the exact mechanism by which they enhance BMP-1 activity remains largely unknown. Here, we used a series of deletion mutants of PCPE-1 and two chimeric constructs with repetitions of the same CUB domain to study the role of each domain and linker. Out of all the forms tested, only those containing both CUB1 and CUB2 were capable of enhancing BMP-1 activity and binding to a mini-procollagen substrate with nanomolar affinity. Both these properties were lost by individual CUB domains, which had dissociation constants at least three orders of magnitude higher. In addition, none of the constructs tested could inhibit PCPE activity, although CUB2CUB2NTR was found to modulate BMP-1 activity through direct complex formation with the enzyme, resulting in a decreased rate of substrate processing. Finally, increasing the length of the short linker between CUB1 and CUB2 was without detrimental effect on both activity and substrate binding. These data support the conclusion that CUB1 and CUB2 bind to the procollagen substrate in a cooperative manner, involving the short linker that provides a flexible tether linking the two binding regions.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Procolágeno/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Unión Competitiva , Proteína Morfogenética Ósea 1/genética , Línea Celular , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Proteínas de la Matriz Extracelular/genética , Glicoproteínas/genética , Humanos , Cinética , Mutación , Unión Proteica , Transfección
15.
J Mol Recognit ; 23(3): 301-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19718689

RESUMEN

The major inducible 70 kDa heat shock protein (hsp70) binds the measles virus (MeV) nucleocapsid with high affinity in an ATP-dependent manner, stimulating viral transcription and genome replication, and profoundly influencing virulence in mouse models of brain infection. Binding is mediated by two hydrophobic motifs (Box-2 and Box-3) located within the C-terminal domain (N(TAIL)) of the nucleocapsid protein, with N(TAIL) being an intrinsically disordered domain. The current work showed that high affinity hsp70 binding to N(TAIL) requires an hsp40 co-chaperone that interacts primarily with the hsp70 nucleotide binding domain (NBD) and displays no significant affinity for N(TAIL). Hsp40 directly enhanced hsp70 ATPase activity in an N(TAIL)-dependent manner, and formation of hsp40-hsp70-N(TAIL) intracellular complexes required the presence of N(TAIL) Box-2 and 3. Results are consistent with the functional interplay between hsp70 nucleotide and substrate binding domains (SBD), where ATP hydrolysis is rate limiting to high affinity binding to client proteins and is enhanced by hsp40. As such, hsp40 is an essential variable in understanding the outcome of MeV-hsp70 interactions.


Asunto(s)
Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Ratones , Modelos Moleculares , Proteínas de la Nucleocápside , Nucleoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética
16.
J Mol Recognit ; 23(5): 435-47, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20058326

RESUMEN

In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.


Asunto(s)
Virus del Sarampión/química , Nucleoproteínas/química , Fosfoproteínas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Soluciones
17.
Virol J ; 6: 59, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19445677

RESUMEN

BACKGROUND: The genome of measles virus consists of a non-segmented single-stranded RNA molecule of negative polarity, which is encapsidated by the viral nucleoprotein (N) within a helical nucleocapsid. The N protein possesses an intrinsically disordered C-terminal domain (aa 401-525, N(TAIL)) that is exposed at the surface of the viral nucleopcapsid. Thanks to its flexible nature, N(TAIL) interacts with several viral and cellular partners. Among these latter, the Interferon Regulator Factor 3 (IRF-3) has been reported to interact with N, with the interaction having been mapped to the regulatory domain of IRF-3 and to N(TAIL). This interaction was described to lead to the phosphorylation-dependent activation of IRF-3, and to the ensuing activation of the pro-immune cytokine RANTES gene. RESULTS: After confirming the reciprocal ability of IRF-3 and N to be co-immunoprecipitated in 293T cells, we thoroughly investigated the N(TAIL)-IRF-3 interaction using a recombinant, monomeric form of the regulatory domain of IRF-3. Using a large panel of spectroscopic approaches, including circular dichroism, fluorescence spectroscopy, nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, we failed to detect any direct interaction between IRF-3 and either full-length N or NTAIL under conditions where these latter interact with the C-terminal X domain of the viral phosphoprotein. Furthermore, such interaction was neither detected in E. coli nor in a yeast two hybrid assay. CONCLUSION: Altogether, these data support the requirement for a specific cellular environment, such as that provided by 293T human cells, for the N(TAIL)-IRF-3 interaction to occur. This dependence from a specific cellular context likely reflects the requirement for a human or mammalian cellular co-factor.


Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , Virus del Sarampión/metabolismo , Sarampión/metabolismo , Nucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Humanos , Factor 3 Regulador del Interferón/química , Factor 3 Regulador del Interferón/genética , Sarampión/genética , Sarampión/virología , Virus del Sarampión/química , Virus del Sarampión/genética , Datos de Secuencia Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/química , Nucleoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/química , Proteínas Virales/genética
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 12): 1246-53, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20054120

RESUMEN

Glycolate oxidase, a peroxisomal flavoenzyme, generates glyoxylate at the expense of oxygen. When the normal metabolism of glyoxylate is impaired by the mutations that are responsible for the genetic diseases hyperoxaluria types 1 and 2, glyoxylate yields oxalate, which forms insoluble calcium deposits, particularly in the kidneys. Glycolate oxidase could thus be an interesting therapeutic target. The crystal structure of human glycolate oxidase (hGOX) in complex with 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole (CCPST) has been determined at 2.8 A resolution. The inhibitor heteroatoms interact with five active-site residues that have been implicated in catalysis in homologous flavodehydrogenases of L-2-hydroxy acids. In addition, the chlorophenyl substituent is surrounded by nonconserved hydrophobic residues. The present study highlights the role of mobility in ligand binding by glycolate oxidase. In addition, it pinpoints several structural differences between members of the highly conserved family of flavodehydrogenases of L-2-hydroxy acids.


Asunto(s)
Oxidorreductasas de Alcohol/química , Tiadiazoles/farmacología , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavinas/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Tiadiazoles/química
19.
J Mol Biol ; 431(24): 4959-4977, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31634467

RESUMEN

The rabies and Ebola viruses recruit the highly conserved host protein LC8 for their own reproductive success. In vivo knockouts of the LC8 recognition motif within the rabies virus phosphoprotein (RavP) result in completely nonlethal viral infections. In this work, we examine the molecular role LC8 plays in viral lethality. We show that RavP and LC8 colocalize in rabies infected cells, and that LC8 interactions are essential for efficient viral polymerase functionality. NMR, SAXS, and molecular modeling demonstrate that LC8 binding to a disordered linker adjacent to an endogenous dimerization domain results in restrictions in RavP domain orientations. The resulting ensemble structure of RavP-LC8 tetrameric complex is similar to that of a related virus phosphoprotein that does not bind LC8, suggesting that with RavP, LC8 binding acts as a switch to induce a more active conformation. The high conservation of the LC8 motif in Lyssavirus phosphoproteins and its presence in other analogous proteins such as the Ebola virus VP35 evinces a broader purpose for LC8 in regulating downstream phosphoprotein functions vital for viral replication.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Drosophila/química , Dineínas/química , Lyssavirus/enzimología , Fosfoproteínas/química , Proteínas Virales/química , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Activación Enzimática , Interacciones Huésped-Patógeno/inmunología , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Virus de la Rabia/metabolismo , Factor de Transcripción STAT1/metabolismo , Relación Estructura-Actividad , Proteínas Virales/metabolismo
20.
Sci Rep ; 9(1): 643, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679727

RESUMEN

The ligand activated transcription factor, aryl hydrocarbon receptor (AhR) emerged as a critical regulator of immune and metabolic processes in the gastrointestinal tract. In the gut, a main source of AhR ligands derives from commensal bacteria. However, many of the reported microbiota-derived ligands have been restricted to indolyl metabolites. Here, by screening commensal bacteria supernatants on an AhR reporter system expressed in human intestinal epithelial cell line (IEC), we found that the short chain fatty acid (SCFA) butyrate induced AhR activity and the transcription of AhR-dependent genes in IECs. We showed that AhR ligand antagonists reduced the effects of butyrate on IEC suggesting that butyrate could act as a ligand of AhR, which was supported by the nuclear translocation of AhR induced by butyrate and in silico structural modelling. In conclusion, our findings suggest that (i) butyrate activates AhR pathway and AhR-dependent genes in human intestinal epithelial cell-lines (ii) butyrate is a potential ligand for AhR which is an original mechanism of gene regulation by SCFA.


Asunto(s)
Butiratos/metabolismo , Mucosa Intestinal/citología , Receptores de Hidrocarburo de Aril/metabolismo , Células CACO-2 , Células HT29 , Humanos , Ligandos , Modelos Moleculares , Dominios Proteicos , Receptores de Hidrocarburo de Aril/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA