Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105073, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474103

RESUMEN

APOBEC3A is an antiviral DNA deaminase often induced by virus infection. APOBEC3A is also a source of cancer mutation in viral and nonviral tumor types. It is therefore critical to identify factors responsible for APOBEC3A upregulation. Here, we test the hypothesis that leaked mitochondrial (mt) double-stranded (ds)RNA is recognized as foreign nucleic acid, which triggers innate immune signaling, APOBEC3A upregulation, and DNA damage. Knockdown of an enzyme responsible for degrading mtdsRNA, the exoribonuclease polynucleotide phosphorylase, results in mtdsRNA leakage into the cytosol and induction of APOBEC3A expression. APOBEC3A upregulation by cytoplasmic mtdsRNA requires RIG-I, MAVS, and STAT2 and is likely part of a broader type I interferon response. Importantly, although mtdsRNA-induced APOBEC3A appears cytoplasmic by subcellular fractionation experiments, its induction triggers an overt DNA damage response characterized by elevated nuclear γ-H2AX staining. Thus, mtdsRNA dysregulation may induce APOBEC3A and contribute to observed genomic instability and mutation signatures in cancer.


Asunto(s)
Citidina Desaminasa , Daño del ADN , Neoplasias , ARN Bicatenario , Humanos , ADN , Neoplasias/genética , ARN Bicatenario/genética , ARN Mitocondrial/genética , Citidina Desaminasa/genética
2.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066960

RESUMEN

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


Asunto(s)
Momento de Replicación del ADN , Estrés Fisiológico , Afidicolina/farmacología , Línea Celular Tumoral , Cromatina/metabolismo , Daño del ADN , Momento de Replicación del ADN/genética , Epigénesis Genética/efectos de los fármacos , Sitios Genéticos , Código de Histonas , Humanos , Modelos Biológicos , Estrés Fisiológico/genética
3.
Nat Commun ; 15(1): 2370, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499542

RESUMEN

Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.


Asunto(s)
Neoplasias , Proteínas , Humanos , Mutación , Neoplasias/genética , Citidina Desaminasa/genética , Citidina Desaminasa/química , ADN , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/química , Citosina
4.
Am J Cancer Res ; 13(12): 6011-6025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187042

RESUMEN

Colorectal cancer is among the most common cancers worldwide and a frequent cause of cancer related deaths. Oxaliplatin is the first line chemotherapeutics for treatment, but the development of resistance leads to recurrence of oxaliplatin insensitive tumors. To understand possible mechanisms of drug tolerance we developed oxaliplatin resistant derivatives (OR-LoVo) of the established LoVo cell line originally isolated from a metastatic colon adenocarcinoma. We compared the microRNA (miRNA) expression profile of the cell pair and found expression of miR-29a-3p significantly increased in OR-LoVo cells compared to parent cells. In addition, miR-29a-3p was significantly elevated in tumor tissue when compared to matched surrounding tissue in human, suggesting potential clinical importance. Ectopic miR-29-a-3p expression induced chemoresistance in a number of different cancer cell lines as well as colorectal tumors in mice. We further demonstrated that miR-29-a-3p downregulates expression of the ubiquitin ligase component FEM1B and that reduction of Fem1b levels is sufficient to confer oxaliplatin resistance. FEM1B targets the glioma associated oncogene Gli1 for degradation, suggesting that increased Gli1 levels could contribute to oxaliplatin tolerance. Accordingly, knockdown of GLI1 reverted chemoresistance of OR-LoVo cells. Mechanistically, resistant cells experienced significantly lower DNA damage upon oxaliplatin treatment, which can be partially explained by reduced oxaliplatin uptake and enhanced repair. These results suggest that miR-29-a-3p overexpression induces oxaliplatin resistance through misregulation of Fem1B and Gli1 levels. TCGA analyses provides strong evidence that the reported findings regarding induced drug tolerance by the miR-29a/Fem1B axis is clinically relevant. The reported findings can help to predict oxaliplatin sensitivity and resistance of colorectal tumors.

5.
Nat Commun ; 14(1): 820, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36781883

RESUMEN

Double-stranded RNA produced during viral replication and transcription activates both protein kinase R (PKR) and ribonuclease L (RNase L), which limits viral gene expression and replication through host shutoff of translation. In this study, we find that APOBEC3B forms a complex with PABPC1 to stimulate PKR and counterbalances the PKR-suppressing activity of ADAR1 in response to infection by many types of viruses. This leads to translational blockage and the formation of stress granules. Furthermore, we show that APOBEC3B localizes to stress granules through the interaction with PABPC1. APOBEC3B facilitates the formation of protein-RNA condensates with stress granule assembly factor (G3BP1) by protecting mRNA associated with stress granules from RNAse L-induced RNA cleavage during viral infection. These results not only reveal that APOBEC3B is a key regulator of different steps of the innate immune response throughout viral infection but also highlight an alternative mechanism by which APOBEC3B can impact virus replication without editing viral genomes.


Asunto(s)
Gránulos de Estrés , Virosis , Humanos , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Replicación Viral , Proteínas Quinasas/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Gránulos Citoplasmáticos/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo
6.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577509

RESUMEN

Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets singlestranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have been fully established, and the specific influence of the DNA sequence on APOBEC3A APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B selectively targets DNA stem-loop structures, and they are distinct from those subjected deamination by APOBEC3A. We develop Oligo-seq, a novel in vitro sequencing-based to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A an APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate mutation landscapes in cancer genomes, driven by their unique substrate selectivity.

7.
Nat Commun ; 12(1): 1602, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707442

RESUMEN

APOBEC mutagenesis, a major driver of cancer evolution, is known for targeting TpC sites in DNA. Recently, we showed that APOBEC3A (A3A) targets DNA hairpin loops. Here, we show that DNA secondary structure is in fact an orthogonal influence on A3A substrate optimality and, surprisingly, can override the TpC sequence preference. VpC (non-TpC) sites in optimal hairpins can outperform TpC sites as mutational hotspots. This expanded understanding of APOBEC mutagenesis illuminates the genomic Twin Paradox, a puzzling pattern of closely spaced mutation hotspots in cancer genomes, in which one is a canonical TpC site but the other is a VpC site, and double mutants are seen only in trans, suggesting a two-hit driver event. Our results clarify this paradox, revealing that both hotspots in these twins are optimal A3A substrates. Our findings reshape the notion of a mutation signature, highlighting the additive roles played by DNA sequence and DNA structure.


Asunto(s)
Transformación Celular Neoplásica/genética , Citidina Desaminasa/genética , ADN/genética , Antígenos de Histocompatibilidad Menor/genética , Conformación de Ácido Nucleico , Proteínas/genética , Secuencia de Bases/genética , Línea Celular Tumoral , Escherichia coli/genética , Células HEK293 , Humanos , Mutagénesis , Mutación , Neoplasias/genética
8.
Nat Commun ; 12(1): 4917, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389714

RESUMEN

APOBEC3A is a cytidine deaminase driving mutagenesis in tumors. While APOBEC3A-induced mutations are common, APOBEC3A expression is rarely detected in cancer cells. This discrepancy suggests a tightly controlled process to regulate episodic APOBEC3A expression in tumors. In this study, we find that both viral infection and genotoxic stress transiently up-regulate APOBEC3A and pro-inflammatory genes using two distinct mechanisms. First, we demonstrate that STAT2 promotes APOBEC3A expression in response to foreign nucleic acid via a RIG-I, MAVS, IRF3, and IFN-mediated signaling pathway. Second, we show that DNA damage and DNA replication stress trigger a NF-κB (p65/IkBα)-dependent response to induce expression of APOBEC3A and other innate immune genes, independently of DNA or RNA sensing pattern recognition receptors and the IFN-signaling response. These results not only reveal the mechanisms by which tumors could episodically up-regulate APOBEC3A but also highlight an alternative route to stimulate the immune response after DNA damage independently of cGAS/STING or RIG-I/MAVS.


Asunto(s)
Citidina Desaminasa/genética , Daño del ADN , Regulación de la Expresión Génica , Inmunidad/genética , Proteínas/genética , Transducción de Señal/fisiología , Línea Celular , Línea Celular Tumoral , Citidina Desaminasa/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células THP-1 , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba , Virus/crecimiento & desarrollo
9.
Mutat Res ; 808: 62-73, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28843435

RESUMEN

Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , Humanos
10.
Cell Rep ; 17(7): 1858-1871, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27829156

RESUMEN

Cancer cells rely on the activation of telomerase or the alternative lengthening of telomeres (ALT) pathways for telomere maintenance and survival. ALT involves homologous recombination (HR)-dependent exchange and/or HR-associated synthesis of telomeric DNA. Utilizing proximity-dependent biotinylation (BioID), we sought to determine the proteome of telomeres in cancer cells that employ these distinct telomere elongation mechanisms. Our analysis reveals that multiple DNA repair networks converge at ALT telomeres. These include the specialized translesion DNA synthesis (TLS) proteins FANCJ-RAD18-PCNA and, most notably, DNA polymerase eta (Polη). We observe that the depletion of Polη leads to increased ALT activity and late DNA polymerase δ (Polδ)-dependent synthesis of telomeric DNA in mitosis. We propose that Polη fulfills an important role in managing replicative stress at ALT telomeres, maintaining telomere recombination at tolerable levels and stimulating DNA synthesis by Polδ.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Proteómica/métodos , Homeostasis del Telómero , Telómero/metabolismo , Biotinilación , ADN/biosíntesis , ADN Polimerasa III/metabolismo , Replicación del ADN , Células HeLa , Humanos , Mitosis , Reparación del ADN por Recombinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA