Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nano Lett ; 24(2): 623-631, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38048272

RESUMEN

The cooling power of a radiative cooler is more than halved in the tropics, e.g., Singapore, because of its harsh weather conditions including high humidity (84% on average), strong downward atmospheric radiation (∼40% higher than elsewhere), abundant rainfall, and intense solar radiation (up to 1200 W/m2 with ∼58% higher UV irradiation). So far, there has been no report of daytime radiative cooling that well achieves effective subambient cooling. Herein, through integrated passive cooling strategies in a hydrogel with desirable optofluidic properties, we demonstrate stable subambient (4-8 °C) cooling even under the strongest solar radiation in Singapore. The integrated passive cooler achieves an ultrahigh cooling power of ∼350 W/m2, 6-10 times higher than a radiative cooler in a tropical climate. An in situ study of radiative cooling with various hydration levels and ambient humidity is conducted to understand the interaction between radiation and evaporative cooling. This work provides insights for the design of an integrated cooler for various climates.

2.
Anal Chem ; 95(48): 17826-17833, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982148

RESUMEN

Populations of nearly identical chemical and biological microparticles include the synthetic microbeads used in cosmetic, biomedical, agri-food, and pharmaceutical industries as well as the class of living microorganisms such as yeast, pollen, and biological cells. Herein, we identify simultaneously the size and chemical nature of spherical microparticle populations with diameters larger than 1 µm. Our analysis relies on the extraction of both physical and chemical signatures from the same optical spectrum recorded using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy. These signatures are the spectral resonances caused by the microparticles, which depend on their size and the absorption peaks revealing their chemical nature. We validate the method first on separated and mixed groups of spherical microplastic particles of two different diameters, where the method is used to calculate the diameter of the microspherical particles. Then, we apply the method to correctly identify and measure the diameter of Saccharomyces cerevisiae yeast cells. Theoretical simulations to help in understanding the effect of size distribution and dispersion support our results.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Tamaño de la Partícula , Saccharomyces cerevisiae , Espectroscopía Infrarroja por Transformada de Fourier/métodos
3.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514637

RESUMEN

Gas sensors that can measure multiple pollutants simultaneously are highly desirable for on-site air pollution monitoring at various scales, both indoor and outdoor. Herein, we introduce a low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously, thus allowing for true analytical measurement. It is a spectral sensor consisting of a Fourier-transform infrared (FTIR) gas analyzer based on a mid-infrared (MIR) spectrometer. The sensor is as small as 7 × 5 × 2.5 cm3. It was deployed in an open-path configuration within a district-scale climatic chamber (Sense City, Marne-la-Vallée, France) with a volume of 20 × 20 × 8 m3. The setup included a transmitter and a receiver separated by 38 m to enable representative measurements of the entire district domain. We used a car inside the climatic chamber, turning the engine on and off to create time sequences of a pollution source. The results showed that carbon dioxide (CO2) and water vapor (H2O) were accurately monitored using the spectral sensor, with agreement with the reference analyzers used to record the pollution levels near the car exhaust. Furthermore, the lower detection limits of CO, NO2 and NO were assessed, demonstrating the capability of the sensor to detect these pollutants. Additionally, a preliminary evaluation of the potential of the spectral sensor to screen multiple volatile organic compounds (VOCs) was conducted at the laboratory scale. Overall, the results demonstrated the potential of the proposed multi-parameter spectral gas sensor in on-site gaseous pollution monitoring.

4.
Cytometry A ; 99(11): 1123-1133, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33550703

RESUMEN

Imaging flow cytometry has become a popular technology for bioparticle image analysis because of its capability of capturing thousands of images per second. Nevertheless, the vast number of images generated by imaging flow cytometry imposes great challenges for data analysis especially when the species have similar morphologies. In this work, we report a deep learning-enabled high-throughput system for predicting Cryptosporidium and Giardia in drinking water. This system combines imaging flow cytometry and an efficient artificial neural network called MCellNet, which achieves a classification accuracy >99.6%. The system can detect Cryptosporidium and Giardia with a sensitivity of 97.37% and a specificity of 99.95%. The high-speed analysis reaches 346 frames per second, outperforming the state-of-the-art deep learning algorithm MobileNetV2 in speed (251 frames per second) with a comparable classification accuracy. The reported system empowers rapid, accurate, and high throughput bioparticle detection in clinical diagnostics, environmental monitoring and other potential biosensing applications.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Aprendizaje Profundo , Criptosporidiosis/diagnóstico por imagen , Citometría de Flujo , Giardia , Humanos
5.
Opt Express ; 29(3): 3524-3532, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770949

RESUMEN

Metalens have been recently introduced to overcome shortcomings of traditional lenses and optical systems, such as large volume and complicated assembly. As a proof-of-principle demonstration, we design an all-dielectric converging cylindrical metalens (CML) for working in long-wave infrared regions around 9 µm, which is made up of silicon-pillar on MgF2 dielectric layer. We further demonstrate the focusing effect of an orthogonal doublet cylindrical metalens (ODCM). Two CMLs are combined orthogonally and a circular focusing spot was demonstrated. This proves that within a certain size range, the focusing effect achieved by the ODCM is similar to that of a traditional circular metalens.

6.
Sensors (Basel) ; 20(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050607

RESUMEN

Air pollution is one of the major environmental issues that humanity is facing. Considering Indoor Air Quality (IAQ), Volatile Organic Compounds (VOCs) are among the most harmful gases that need to be detected, but also need to be eliminated using air purification technologies. In this work, we tackle both problems simultaneously by introducing an experimental setup enabling continuous measurement of the VOCs by online absorption spectroscopy using a MEMS-based Fourier Transform infrared (FTIR) spectrometer, while those VOCs are continuously eliminated by continuous adsorption and photocatalysis, using zinc oxide nanowires (ZnO-NWs). The proposed setup enabled a preliminary study of the mechanisms involved in the purification process of acetone and toluene, taken as two different VOCs, also typical of those that can be found in tobacco smoke. Our experiments revealed very different behaviors for those two gases. An elimination ratio of 63% in 3 h was achieved for toluene, while it was only 14% for acetone under same conditions. Adsorption to the nanowires appears as the dominant mechanism for the acetone, while photocatalysis is dominant in case of the toluene.

7.
Nano Lett ; 19(4): 2509-2515, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30920842

RESUMEN

We propose spectral domain attenuated reflectometry (SDAR) for fast characterization of nanomaterial growth. The method is demonstrated here for zinc oxide (ZnO) nanowires (NWs) which are grown vertically in random forest fashion showing that it is not limited to well-ordered NWs. We show how SDAR can provide, on the basis of a single measured spectrum, simultaneous information on nanowire length, nanowire density (through nanowire/air filling ratio), and crystalline quality (through band gap). The robustness of the proposed method is assessed first through comparison with information obtained from SEM and XRD taken as reference. In SDAR, the process for fast extraction of NW thickness and filling ratio values  makes use of the interference pattern contrast and the spectral periodicity in the reflection response which involve a best fit of the measured spectra with simple theoretical modeling based on the effective medium approach, achieved with a mean square error down to 0.1%. The results also suggest the existence of either 2 or 3 layers of different effective refractive index, hence providing insight on possible growth mechanisms.

8.
Opt Express ; 27(16): 22994-23008, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510584

RESUMEN

Lipid droplets have gained strong interest in recent years to comprehend how they function and coordinate with other parts of the cell. However, it remains challenging to study the regulation of lipid droplets in live preadipocytes using conventional microscopic techniques. In this paper, we study the effects of fatty acid stimulation and cell starvation on lipid droplets using optical diffraction tomography and Raman spectroscopy by measuring size, refractive index, volume, dry mass and degree of unsaturation. The increase of fatty acids causes an increase in the number and dry mass of lipid droplets. During starvation, the number of lipid droplets increases drastically, which are released to mitochondria to release energy. Studying lipid droplets under different chemical stimulations could help us understand the regulation of lipid droplets for metabolic disorders, such as obesity and diabetes.


Asunto(s)
Adipocitos/metabolismo , Gotas Lipídicas/metabolismo , Espectrometría Raman/métodos , Tomografía Óptica/métodos , Células 3T3-L1 , Animales , Calibración , Holografía , Ratones , Tamaño de la Partícula , Imagen de Lapso de Tiempo
9.
Sensors (Basel) ; 19(4)2019 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-30813389

RESUMEN

A novel optofluidic sensor that measures the local pressure of the fluid inside a microfluidic channel is presented. It can be integrated directly on-channel and requires no additional layers in fabrication. The detection can be accomplished at a single wavelength; and thereby, only a single laser diode and a single photodetector are required. This renders the sensor to be compact, cheap and easy to fabricate. Basically, the sensor consisted of a Fabry⁻Pérot microresonator enclosing the fluidic channel. A novel structure of the Fabry⁻Pérot was employed to achieve high-quality factor, that was essential to facilitate the single wavelength detection. The enhanced performance was attributed to the curved mirrors and cylindrical lenses used to avoid light diffraction loss. The presented sensor was fabricated and tested with deionized water liquid and shown to exhibit a sensitivity up to 12.46 dBm/bar, and a detection limit of 8.2 mbar. Numerical simulations are also presented to evaluate the mechanical⁻fluidic performance of the device.

10.
Opt Express ; 26(10): 13443-13460, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801370

RESUMEN

In this work, black silicon (BSi) structures including nanocones and nanowires are modeled using effective medium theory (EMT), where each structure is assumed to be a multilayer structure of varying effective index, and its optical scattering in the infrared range is studied in terms of its total reflectance, transmittance and absorptance using the transfer matrix method (TMM). The different mechanisms of the intrinsic absorption of silicon are taken into account, which translates into proper modeling of its complex refraction index, depending on several parameters including the doping level. The model validity is studied by comparing the results with the rigorous coupled wave analysis and is found to be in good agreement. The effect of the aspect ratio, the spacing between the structure features and the structure disordered nature are all considered. Moreover, the results of the proposed model are compared with reflectance measurements of a fabricated BSi sample, in addition to other measurements reported in the literature for Silicon Nanowires (SiNWs). The TMM along with EMT proves to be a convenient method for modeling BSi due to its simple implementation and computational speed.

11.
Appl Opt ; 57(18): 5112-5120, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30117973

RESUMEN

In-plane Fabry-Perot cavities based on deeply etched Bragg mirrors are used in many microphotonic applications including sensing, telecom, and swept laser devices. A main limitation to their performance is the small free spectral range (FSR) and low finesse. The FSR limits the dynamic range or the wavelength tuning range, while the linewidth limits the resolution. In this work, we propose coupled Fabry-Perot micro-cavities that greatly enhance the FSR, besides reducing the linewidth, which lead to higher finesse and better performance. The proposed structure is modeled and etched on Si substrate to a depth of 150 µm using the deep reactive ion etching technology. Optical measurements indicate an enhanced FSR of more than 140 nm and a quality factor of 3152 using coupled cavities as compared to only 9 nm FSR for a single cavity of the same length. The over-etching and surface roughness, being the main effective fabrication tolerances, are modeled and extracted from the measurements.

12.
Anal Methods ; 16(2): 262-268, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38111305

RESUMEN

Mid-infrared Fourier-transform infrared (FT-IR) spectroscopy of liquid biological samples is limited by the high absorption of water in this spectral range, which makes conventional transmission cuvettes unsuitable as their centimeter-scale length is already too big. The most common alternative relies on the use of attenuated total reflection (ATR) accessories, which provide a small interaction path length for light along the interface between the analyte and the expensive ATR crystals. In this work, we address this issue by proposing a disposable and low-cost micro-transmission cell. Its construction relies on a simple technique, which consists of dispersing plastic spherical microparticles in a liquid sample before dispensing it between two pieces of silicon assembled one onto the other and acting as windows for the cell. Consequently, the microparticles act as a spacer of very precise height in-between the two silicon windows. This technique allows easy construction of infrared absorption cells with near-optimum optical interaction path length just by selecting the most appropriate particle size. The concept is demonstrated by measuring the concentration of glucose in aqueous solutions using microspheres of diameter 20 µm then 40 µm and analyzing the corresponding glucose absorption peaks in the wavenumber range 950-1200 cm-1. The performance is compared to that of standard ATR spectroscopy of the same samples. This resulted in a root-mean-square error of cross-validation (RMSECV) of 58.8 mg dl-1 as obtained for transmission measurements by partial least squares (PLS) regression, which is comparable to the RMSECV of 53 mg dl-1 for single-reflection diamond ATR measurements.


Asunto(s)
Glucosa , Silicio , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis de los Mínimos Cuadrados , Agua , Microplásticos
13.
Opt Express ; 21(12): 13906-16, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23787580

RESUMEN

A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 µm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Lentes , Iluminación/instrumentación , Sistemas Microelectromecánicos/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Integración de Sistemas
14.
Opt Express ; 21(2): 2378-92, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23389218

RESUMEN

We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q ~1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations.


Asunto(s)
Diseño Asistido por Computadora , Interferometría/instrumentación , Lentes , Modelos Teóricos , Refractometría/instrumentación , Silicio/química , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización
15.
ACS Omega ; 8(11): 10335-10341, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969444

RESUMEN

Microplastics are particulate water contaminants that are raising concerns regarding their environmental and health impacts. Optical spectroscopy is the gold standard for their detection; however, it has severe limitations such as tens of hours of analysis time and spatial resolution of more than 10 µm, when targeting the production of a 2D map of the microparticle population. In this work, through a single spectrum acquisition, we aim at quickly getting information about the whole population of identical particles, their chemical nature, and their size in a range below 20 µm. To this end, we built a compact setup enabling both attenuated total reflection Fourier transform infrared (ATR-FTIR) and Raman spectroscopy measurement on the same sample for comparison purposes. We used monodisperse polystyrene and poly(methyl methacrylate) microplastic spheres of sizes ranging between 6 and 20 µm, also measured collectively using a bench-top FTIR spectrometer in ATR mode. The ATR-FTIR technique appears to be more sensitive for the smallest particles of 6 µm, while the opposite trend is observed using Raman spectroscopy. We use theoretical modeling to simulate and explain the ripples observed in the measured spectra at the shortest wavelength (higher wavenumber) region, which appears as an indicator of the microparticle dimension. The latter finding opens new perspectives for ATR-FTIR for the identification and classification of populations of nearly identical micro-scale bodies, such as bacteria and other micro-organisms, where the same measured spectrum embeds dual information about the chemical nature and the size.

16.
ACS Omega ; 8(11): 9854-9860, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969403

RESUMEN

In Raman analysis, the substrate material serves very often for signal enhancement, especially when metallic surfaces are involved; however, in other cases, the substrate has an opposite effect as it is the source of a parasitic signal preventing the observation of the sample material of interest. This is particularly true with the advent of microfluidic devices involving either silicon or polymer surfaces. On the other hand, in a vast majority of Raman experiments, the analysis is made on a horizontal support holding the sample of interest. In our paper, we report that a simple tilting of the supporting substrate, in this case, silicon, can drastically decrease and eventually inhibit the Raman signal of the substrate material, leading to an easier observation of the target analyte of the sample, in this case, microplastic particles. This effect is very pronounced especially when looking for tiny particles. Explanation of this trend is provided thanks to a supporting experiment and further numerical simulations that suggest that the lensing effect of the particles plays an important role. These findings may be useful for Raman analysis of other microscale particles having curved shapes, including biological cells.

17.
Microsyst Nanoeng ; 7: 77, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712489

RESUMEN

Co-integration of nanomaterials into microdevices poses several technological challenges and presents numerous scientific opportunities that have been addressed in this paper by integrating zinc oxide nanowires (ZnO-NWs) into a microfluidic chamber. In addition to the applications of these combined materials, this work focuses on the study of the growth dynamics and uniformity of nanomaterials in a tiny microfluidic reactor environment. A unique experimental platform was built through the integration of a noninvasive optical characterization technique with the microfluidic reactor. This platform allowed the unprecedented demonstration of time-resolved and spatially resolved monitoring of the in situ growth of NWs, in which the chemicals were continuously fed into the microfluidic reactor. The platform was also used to assess the uniformity of NWs grown quickly in a 10-mm-wide microchamber, which was intentionally chosen to be 20 times wider than those used in previous attempts because it can accommodate applications requiring a large surface of interaction while still taking advantage of submillimeter height. Further observations included the effects of varying the flow rate on the NW diameter and length in addition to a synergetic effect of continuous renewal of the growth solution and the confined environment of the chemical reaction.

18.
iScience ; 24(7): 102814, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355147

RESUMEN

Dew water, mostly ignored until now, can provide clean freshwater resources, just by extracting the atmospheric vapor available in surrounding air. Inspired by silicon-based solar panels, the vapor can be harvested by a concept of water condensing panels. Efficient water harvesting requires not only a considerable yield but also a timely water removal from the surface since the very beginning of condensation to avoid the huge evaporation losses. This translates into strict surface properties, which are difficult to simultaneously realize. Herein, we study various functionalized silicon surfaces, including the so-called Black Silicon, which supports two droplet motion modes-out-of-plane jumping and in-plane sweeping, due to its unique surface morphology, synergistically leading to a pioneering combination of above two required characteristics. According to silicon material's scalability, the proposed silicon-based water panels would benefit from existing infrastructures toward dual functions of energy harvesting in daytime and water harvesting in nighttime.

19.
RSC Adv ; 11(29): 17603-17610, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480202

RESUMEN

Recent deep neural networks have shown superb performance in analyzing bioimages for disease diagnosis and bioparticle classification. Conventional deep neural networks use simple classifiers such as SoftMax to obtain highly accurate results. However, they have limitations in many practical applications that require both low false alarm rate and high recovery rate, e.g., rare bioparticle detection, in which the representative image data is hard to collect, the training data is imbalanced, and the input images in inference time could be different from the training images. Deep metric learning offers a better generatability by using distance information to model the similarity of the images and learning function maps from image pixels to a latent space, playing a vital role in rare object detection. In this paper, we propose a robust model based on a deep metric neural network for rare bioparticle (Cryptosporidium or Giardia) detection in drinking water. Experimental results showed that the deep metric neural network achieved a high accuracy of 99.86% in classification, 98.89% in precision rate, 99.16% in recall rate and zero false alarm rate. The reported model empowers imaging flow cytometry with capabilities of biomedical diagnosis, environmental monitoring, and other biosensing applications.

20.
Sci Rep ; 11(1): 10533, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006979

RESUMEN

Microplastics contaminating drinking water is a growing issue that has been the focus of a few recent studies, where a major bottleneck is the time-consuming analysis. In this work, a micro-optofluidic platform is proposed for fast quantification of microplastic particles, the identification of their chemical nature and size, especially in the 1-100 µm size range. Micro-reservoirs ahead of micro-filters are designed to accumulate all trapped solid particles in an ultra-compact area, which enables fast imaging and optical spectroscopy to determine the plastic nature and type. Furthermore, passive size sorting is implemented for splitting the particles according to their size range in different reservoirs. Besides, flow cytometry is used as a reference method for retrieving the size distribution of samples, where chemical nature information is lost. The proof of concept of the micro-optofluidic platform is validated using model samples where standard plastic particles of different size and chemical nature are mixed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA