Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 544(7649): 207-211, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28355177

RESUMEN

Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

2.
Phys Rev Lett ; 127(26): 266802, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029471

RESUMEN

Microscopic insight into interactions is a key for understanding the properties of heterogenous interfaces. We analyze local attraction in noncovalently bonded Xe-Cs^{+} aggregates and monolayers on Cu(111) as well as repulsion upon electron transfer. Using two-photon photoemission spectroscopy, scanning tunneling microscopy, and coupled cluster calculations combined with an image-charge model, we explain the intricate impact Xe has on Cs^{+}/Cu(111). We find that attraction between Cs^{+} and Xe counterbalances the screened Coulomb repulsion between Cs^{+} ions on Cu(111). Furthermore, we observe that the Cs 6s electron is repelled from Cu(111) due to xenon's electron density. Together, this yields a dual, i.e., attractive or repulsive, response of Xe depending on the positive or negative charge of the respective counterparticle, which emphasizes the importance of the Coulomb interaction in these systems.

3.
Phys Rev Lett ; 125(7): 076803, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857578

RESUMEN

Employing femtosecond laser pulses in front and back side pumping of Au/Fe/MgO(001) combined with detection in two-photon photoelectron emission spectroscopy, we analyze local relaxation dynamics of excited electrons in buried Fe, injection into Au across the Fe-Au interface, and electron transport across the Au layer at 0.6 to 2.0 eV above the Fermi energy. By analysis as a function of Au film thickness we obtain the electron lifetimes of bulk Au and Fe and distinguish the relaxation in the heterostructure's constituents. We also show that the excited electrons propagate through Au in a superdiffusive regime and conclude further that electron injection across the epitaxial interface proceeds ballistically by electron wave packet propagation.

4.
Opt Express ; 27(22): 31330-31337, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684367

RESUMEN

High-energy femtosecond laser pulses in the mid-infrared (MIR) wavelength range are essential for a wide range of applications from strong-field physics to selectively pump and probe low energy excitations in condensed matter and molecular vibrations. Here we report a four stage optical parametric chirped pulse amplifier (OPCPA) which generates ultrashort pulses at a central wavelength of 3000 nm with 430 µJ energy per pulse at a bandwidth of 490 nm. Broadband emission of a Ti:sapphire oscillator seeds both the four stage OPCPA 800 nm and the pump line at 1030 nm. The first stage amplifies the 800 nm pulses in BBO using a non-collinear configuration. The second stage converts the wavelength to 1560 nm using difference frequency generation in BBO in a collinear geometry. The third stage amplifies this frequency non-collinearly in KTA. Finally, the fourth stage generates the 3000 nm radiation in a collinear configuration in LiIO 3 due to the broad amplification bandwidth this crystal provides. We compress these pulses to 65 fs by transmission through sapphire. Quantitative calculations of the individual non-linear processes in all stages verify that our OPCPA architecture operates close to optimum efficiency. Low absorption losses suggest that this particular design is very suitable for operation at high average power and multi kHz repetition rates.

5.
Phys Rev Lett ; 122(6): 067202, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822073

RESUMEN

By combining interface-sensitive nonlinear magneto-optical experiments with femtosecond time resolution and ab initio time-dependent density functional theory, we show that optically excited spin dynamics at Co/Cu(001) interfaces proceeds via spin-dependent charge transfer and back transfer between Co and Cu. This ultrafast spin transfer competes with dissipation of spin angular momentum mediated by spin-orbit coupling already on sub 100 fs timescales. We thereby identify the fundamental microscopic processes during laser-induced spin transfer at a model interface for technologically relevant ferromagnetic heterostructures.

6.
Phys Rev Lett ; 122(15): 159901, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050496

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.120.166401.

7.
Phys Rev Lett ; 120(16): 166401, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756943

RESUMEN

Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1T-TaS_{2}, we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J≈14 fs. Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.

8.
Phys Rev Lett ; 108(9): 097002, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463660

RESUMEN

Employing the momentum sensitivity of time- and angle-resolved photoemission spectroscopy we demonstrate the analysis of ultrafast single- and many-particle dynamics in antiferromagnetic EuFe(2)As(2). Their separation is based on a temperature-dependent difference of photoexcited hole and electron relaxation times probing the single-particle band and the spin density wave gap, respectively. Reformation of the magnetic order occurs at 800 fs, which is 4 times slower compared to electron-phonon equilibration due to a smaller spin-dependent relaxation phase space.

9.
Phys Rev Lett ; 107(9): 097002, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21929262

RESUMEN

The nonequilibrium state of the high-T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8+δ) and its ultrafast dynamics have been investigated by femtosecond time- and angle-resolved photoemission spectroscopy well below the critical temperature. We probe optically excited quasiparticles at different electron momenta along the Fermi surface and detect metastable quasiparticles near the antinode, since their decay toward the nodal region through e-e scattering is blocked by phase space restrictions. The observed lack of momentum dependence in the decay rates is in agreement with relaxation dynamics dominated by Cooper pair recombination in a boson bottleneck limit.

10.
Struct Dyn ; 6(6): 065101, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31700944

RESUMEN

Ultrafast reflection high-energy electron diffraction is employed to follow the lattice excitation of a Bi(111) surface upon irradiation with a femtosecond laser pulse. The thermal motion of the atoms is analyzed through the Debye-Waller effect. While the Bi bulk is heated on time scales of 2 to 4 ps, we observe that the excitation of vibrational motion of the surface atoms occurs much slower with a time constant of 12 ps. This transient nonequilibrium situation is attributed to the weak coupling between bulk and surface phonon modes which hampers the energy flow between the two subsystems. From the absence of a fast component in the transient diffraction intensity, it is in addition concluded that truncated bulk phonon modes are absent at the surface.

11.
Struct Dyn ; 6(3): 035101, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31111080

RESUMEN

The lattice response of a Bi(111) surface upon impulsive femtosecond laser excitation is studied with time-resolved reflection high-energy electron diffraction. We employ a Debye-Waller analysis at large momentum transfer of 9.3 Å-1 ≤ Δ k ≤ 21.8 Å-1 in order to study the lattice excitation dynamics of the Bi surface under conditions of weak optical excitation up to 2 mJ/cm2 incident pump fluence. The observed time constants τ int of decay of diffraction spot intensity depend on the momentum transfer Δk and range from 5 to 12 ps. This large variation of τ int is caused by the nonlinearity of the exponential function in the Debye-Waller factor and has to be taken into account for an intensity drop ΔI > 0.2. An analysis of more than 20 diffraction spots with a large variation in Δk gave a consistent value for the time constant τT of vibrational excitation of the surface lattice of 12 ± 1 ps independent on the excitation density. We found no evidence for a deviation from an isotropic Debye-Waller effect and conclude that the primary laser excitation leads to thermal lattice excitation, i.e., heating of the Bi surface.

12.
J Phys Condens Matter ; 31(12): 124002, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30625433

RESUMEN

We demonstrate a novel method for the excitation of sizable magneto-optical effects in Au by means of the laser-induced injection of hot spin-polarized electrons in Au/Fe/MgO(0 0 1) heterostructures. It is based on the energy- and spin-dependent electron transmittance of Fe/Au interface which acts as a spin filter for non-thermalized electrons optically excited in Fe. We show that after crossing the interface, majority electrons propagate through the Au layer with the velocity on the order of 1 nm fs-1 (close to the Fermi velocity) and the decay length on the order of 100 nm. Featuring ultrafast functionality and requiring no strong external magnetic fields, spin injection results in a distinct magneto-optical response of Au. We develop a formalism based on the phase of the transient complex MOKE response and demonstrate its robustness in a plethora of experimental and theoretical MOKE studies on Au, including our ab initio calculations. Our work introduces a flexible tool to manipulate magneto-optical properties of metals on the femtosecond timescale that holds high potential for active magneto-photonics, plasmonics, and spintronics.

13.
J Phys Condens Matter ; 29(17): 174002, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28349899

RESUMEN

We discuss fundamental aspects of laser-induced ultrafast demagnetization probed by the time-resolved magneto-optical Kerr effect (MOKE). Studying thin Fe films on MgO substrate in the absence of electronic transport, we demonstrate how to disentangle pump-induced variations of magnetization and magneto-optical coefficients. We provide a mathematical formalism for retrieving genuine laser-induced magnetization dynamics and discuss its applicability in real experimental situations. We further stress the importance of temporal resolution achieved in the experiments and argue that measurements of both time-resolved MOKE rotation and ellipticity are needed for the correct assessment of magnetization dynamics on sub-picosecond timescales. The framework developed here sheds light onto the details of the time-resolved MOKE technique and contributes to the understanding of the interplay between ultrafast laser-induced optical and magnetic effects.

14.
Nat Commun ; 7: 10459, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26804717

RESUMEN

Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.

15.
Nat Commun ; 7: 13761, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27996009

RESUMEN

In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate a quantitative analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.

16.
Faraday Discuss ; 171: 299-310, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25415056

RESUMEN

The dynamics of the transient electronic structure in the charge density wave (CDW) system RTe3 (R = rare-earth element) is studied using time- and angle-resolved photoemission spectroscopy (trARPES). Employing a three-pulse pump-probe scheme we investigate the effect of the amplitude mode oscillations on the electronic band structure and, in particular, on the CDW energy gap. We observe coherent oscillations in both lower and upper CDW band with opposite phases, whereby two dominating frequencies are modulating the CDW order parameter. This demonstrates the existence of more than one collective amplitude mode, in contrast to a simple Peierls model. Coherent control experiments of the two amplitude modes, which are strongly coupled in equilibrium, demonstrate independent control of the modes suggesting a decoupling of both modes in the transient photoexcited state.

17.
J Phys Condens Matter ; 26(35): 352001, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25115690

RESUMEN

The electron-phonon coupling parameters in the vicinity of the Γ point, λ(Γ), for electronic quantum well states in epitaxial lead films on a Si(1 1 1) substrate are measured using 5, 7 and 12 ML films and femtosecond laser photoemission spectroscopy. The λ (Γ) values in the range of 0.6-0.9 were obtained by temperature-dependent line width analysis of occupied quantum well states and found to be considerably smaller than the momentum averaged electron-phonon coupling at the Fermi level of bulk lead, (λ = 1.1-1.7). The results are compared to density functional theory calculations of the lead films with and without interfacial stress. It is shown that the discrepancy can not be explained by means of confinement effects or simple structural modifications of the Pb films and, thus, is attributed to the influence of the substrate on the Pb electronic and vibrational structures.

18.
Nat Commun ; 5: 4353, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25014895

RESUMEN

A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*neq(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the single-band Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations.

19.
J Phys Condens Matter ; 25(9): 094003, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23399984

RESUMEN

We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe(2)As(2) and optimally doped BaFe(1.85)Co(0.15)As(2) near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A(1g) mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ<ω(2)> between 30 and 70 meV(2). The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 2): 056410, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21230605

RESUMEN

The polarization of the two beam (driver-probe) high-order harmonic generation from solids is measured. The experiments, together with computer simulations, allow us to distinguish two different coupling mechanisms of the driver and the probe, resulting in different harmonic efficiencies and spectral slopes. We find that in the nonrelativistic regime the coupling is mostly due to the nonlinear plasma density modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA