Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Protoc ; 1(8): e232, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34432381

RESUMEN

CRISPR-Cas9 mutagenesis facilitates the investigation of gene function in a number of developmental and cellular contexts. Human pluripotent stem cells (hPSCs), either embryonic or induced, are a tractable cellular model to investigate molecular mechanisms involved in early human development and cell fate decisions. hPSCs also have broad potential in regenerative medicine to model, investigate, and ameliorate diseases. Here, we provide an optimized protocol for efficient CRISPR-Cas9 genome editing of hPSCs to investigate the functional role of genes by engineering null mutations. We emphasize the importance of screening single guide RNAs (sgRNAs) to identify those with high targeting efficiency for generation of clonally derived null mutant hPSC lines. We provide important considerations for targeting genes that may have a role in hPSC maintenance. We also present methods to evaluate the on-target mutation spectrum and unintended karyotypic changes. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Selecting and ligating sgRNAs into expression plasmids Basic Protocol 2: Validation of sgRNA via in vitro transcription and cleavage assay Basic Protocol 3: Nucleofection of primed human embryonic stem cells Basic Protocol 4: MiSeq analysis of indel mutations Basic Protocol 5: Single cell cloning of targeted hPSCs Basic Protocol 6: Karyotyping of targeted hPSCs.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Mutación con Pérdida de Función , ARN Guía de Kinetoplastida/genética
2.
Stem Cell Reports ; 14(6): 1009-1017, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32413278

RESUMEN

Human pluripotent stem cells (PSCs) are subject to the appearance of recurrent genetic variants on prolonged culture. We have now found that, compared with isogenic differentiated cells, PSCs exhibit evidence of considerably more DNA damage during the S phase of the cell cycle, apparently as a consequence of DNA replication stress marked by slower progression of DNA replication, activation of latent origins of replication, and collapse of replication forks. As in many cancers, which, like PSCs, exhibit a shortened G1 phase and DNA replication stress, the resulting DNA damage may underlie the higher incidence of abnormal and abortive mitoses in PSCs, resulting in chromosomal non-dysjunction or cell death. However, we have found that the extent of DNA replication stress, DNA damage, and consequent aberrant mitoses can be substantially reduced by culturing PSCs in the presence of exogenous nucleosides, resulting in improved survival, clonogenicity, and population growth.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Nucleósidos/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Línea Celular , Medios de Cultivo/química , Medios de Cultivo/farmacología , Citoprotección , Daño del ADN , Humanos , Mitosis , Nucleósidos/análisis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA