Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
PLoS Genet ; 19(10): e1010984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782660

RESUMEN

During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.


Asunto(s)
Actomiosina , Proteínas de Caenorhabditis elegans , Animales , Actomiosina/genética , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cuerpos Polares , Citocinesis/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Meiosis/genética , Oocitos/metabolismo , Paclitaxel , Proteínas Asociadas a Microtúbulos/genética
2.
PLoS Genet ; 19(1): e1010363, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608115

RESUMEN

The conserved two-component XMAP215/TACC modulator of microtubule stability is required in multiple animal phyla for acentrosomal spindle assembly during oocyte meiotic cell division. In C. elegans, XMAP215/zyg-9 and TACC/tac-1 mutant oocytes exhibit multiple and indistinguishable oocyte spindle assembly defects beginning early in meiosis I. To determine if these defects represent one or more early requirements with additional later and indirect consequences, or multiple temporally distinct and more direct requirements, we have used live cell imaging and fast-acting temperature-sensitive zyg-9 and tac-1 alleles to dissect their requirements at high temporal resolution. Temperature upshift and downshift experiments indicate that the ZYG-9/TAC-1 complex has multiple temporally distinct and separable requirements throughout oocyte meiotic cell division. First, we show that during prometaphase ZYG-9 and TAC-1 promote the coalescence of early pole foci into a bipolar structure, stabilizing pole foci as they grow and limiting their growth rate, with these requirements being independent of an earlier defect in microtubule organization that occurs upon nuclear envelope breakdown. Second, during metaphase, ZYG-9 and TAC-1 maintain spindle bipolarity by suppressing ectopic pole formation. Third, we show that ZYG-9 and TAC-1 also are required for spindle assembly during meiosis II, independently of their meiosis I requirements. The metaphase pole stability requirement appears to be important for maintaining chromosome congression, and we discuss how negative regulation of microtubule stability by ZYG-9/TAC-1 during oocyte meiotic cell division might account for the observed defects in spindle pole coalescence and stability.


Asunto(s)
Caenorhabditis elegans , Huso Acromático , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Huso Acromático/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Polos del Huso/genética , Meiosis/genética , Oocitos/metabolismo
3.
PLoS Genet ; 18(4): e1009799, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377871

RESUMEN

Centrioles are submicron-scale, barrel-shaped organelles typically found in pairs, and play important roles in ciliogenesis and bipolar spindle assembly. In general, successful execution of centriole-dependent processes is highly reliant on the ability of the cell to stringently control centriole number. This in turn is mainly achieved through the precise duplication of centrioles during each S phase. Aberrations in centriole duplication disrupt spindle assembly and cilia-based signaling and have been linked to cancer, primary microcephaly and a variety of growth disorders. Studies aimed at understanding how centriole duplication is controlled have mainly focused on the post-translational regulation of two key components of this pathway: the master regulatory kinase ZYG-1/Plk4 and the scaffold component SAS-6. In contrast, how transcriptional control mechanisms might contribute to this process have not been well explored. Here we show that the chromatin remodeling protein CHD-1 contributes to the regulation of centriole duplication in the C. elegans embryo. Specifically, we find that loss of CHD-1 or inactivation of its ATPase activity can restore embryonic viability and centriole duplication to a strain expressing insufficient ZYG-1 activity. Interestingly, loss of CHD-1 is associated with increases in the levels of two ZYG-1-binding partners: SPD-2, the centriole receptor for ZYG-1 and SAS-6. Finally, we explore transcriptional regulatory networks governing centriole duplication and find that CHD-1 and a second transcription factor, EFL-1/DPL-1 cooperate to down regulate expression of CDK-2, which in turn promotes SAS-6 protein levels. Disruption of this regulatory network results in the overexpression of SAS-6 and the production of extra centrioles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Centriolos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Centriolos/genética , Centriolos/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Quinasas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 16(10): e1008751, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33027250

RESUMEN

The requirements for oocyte meiotic cytokinesis during polar body extrusion are not well understood. In particular, the relationship between the oocyte meiotic spindle and polar body contractile ring dynamics remains largely unknown. We have used live cell imaging and spindle assembly defective mutants lacking the function of CLASP/CLS-2, kinesin-12/KLP-18, or katanin/MEI-1 to investigate the relationship between meiotic spindle structure and polar body extrusion in C. elegans oocytes. We show that spindle bipolarity and chromosome segregation are not required for polar body contractile ring formation and chromosome extrusion in klp-18 mutants. In contrast, oocytes with similarly severe spindle assembly defects due to loss of CLS-2 or MEI-1 have penetrant and distinct polar body extrusion defects: CLS-2 is required early for contractile ring assembly or stability, while MEI-1 is required later for contractile ring constriction. We also show that CLS-2 both negatively regulates membrane ingression throughout the oocyte cortex during meiosis I, and influences the dynamics of the central spindle-associated proteins Aurora B/AIR-2 and MgcRacGAP/CYK-4. We suggest that proper regulation by CLS-2 of both oocyte cortical stiffness and central spindle protein dynamics may influence contractile ring assembly during polar body extrusion in C. elegans oocytes.


Asunto(s)
Aurora Quinasa B/genética , Proteínas de Caenorhabditis elegans/genética , Meiosis/genética , Proteínas Asociadas a Microtúbulos/genética , Oocitos/crecimiento & desarrollo , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Membrana Celular/genética , Segregación Cromosómica/genética , Citocinesis/genética , Femenino , Cinesinas/genética , Cuerpos Polares/citología , Huso Acromático/genética
5.
PLoS Genet ; 16(9): e1009001, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886661

RESUMEN

During meiosis, diploid organisms reduce their chromosome number by half to generate haploid gametes. This process depends on the repair of double strand DNA breaks as crossover recombination events between homologous chromosomes, which hold homologs together to ensure their proper segregation to opposite spindle poles during the first meiotic division. Although most organisms are limited in the number of crossovers between homologs by a phenomenon called crossover interference, the consequences of excess interfering crossovers on meiotic chromosome segregation are not well known. Here we show that extra interfering crossovers lead to a range of meiotic defects and we uncover mechanisms that counteract these errors. Using chromosomes that exhibit a high frequency of supernumerary crossovers in Caenorhabditis elegans, we find that essential chromosomal structures are mispatterned in the presence of multiple crossovers, subjecting chromosomes to improper spindle forces and leading to defects in metaphase alignment. Additionally, the chromosomes with extra interfering crossovers often exhibited segregation defects in anaphase I, with a high incidence of chromatin bridges that sometimes created a tether between the chromosome and the first polar body. However, these anaphase I bridges were often able to resolve in a LEM-3 nuclease dependent manner, and chromosome tethers that persisted were frequently resolved during Meiosis II by a second mechanism that preferentially segregates the tethered sister chromatid into the polar body. Altogether these findings demonstrate that excess interfering crossovers can severely impact chromosome patterning and segregation, highlighting the importance of limiting the number of recombination events between homologous chromosomes for the proper execution of meiosis.


Asunto(s)
Segregación Cromosómica/genética , Intercambio Genético/genética , Meiosis/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromátides/genética , Cromatina/genética , Posicionamiento de Cromosoma/genética , Cromosomas/genética , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/genética , Recombinación Genética
6.
Proc Natl Acad Sci U S A ; 115(5): E954-E963, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29348204

RESUMEN

The adenomatous polyposis coli (APC) tumor suppressor has dual functions in Wnt/ß-catenin signaling and accurate chromosome segregation and is frequently mutated in colorectal cancers. Although APC contributes to proper cell division, the underlying mechanisms remain poorly understood. Here we show that Caenorhabditis elegans APR-1/APC is an attenuator of the pulling forces acting on the mitotic spindle. During asymmetric cell division of the C. elegans zygote, a LIN-5/NuMA protein complex localizes dynein to the cell cortex to generate pulling forces on astral microtubules that position the mitotic spindle. We found that APR-1 localizes to the anterior cell cortex in a Par-aPKC polarity-dependent manner and suppresses anterior centrosome movements. Our combined cell biological and mathematical analyses support the conclusion that cortical APR-1 reduces force generation by stabilizing microtubule plus-ends at the cell cortex. Furthermore, APR-1 functions in coordination with LIN-5 phosphorylation to attenuate spindle-pulling forces. Our results document a physical basis for the attenuation of spindle-pulling force, which may be generally used in asymmetric cell division and, when disrupted, potentially contributes to division defects in cancer.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , División Celular Asimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Huso Acromático , Animales , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Centrosoma/metabolismo , Simulación por Computador , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Mutación , Interferencia de ARN , Estrés Mecánico , Tubulina (Proteína)/metabolismo , Cigoto
7.
Dev Biol ; 398(2): 267-79, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25523393

RESUMEN

Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two Cullin-RING ubiquitin ligase (CRL) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/ß-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these findings we propose that ubiquitin-mediated protein degradation, like many transcription factors, function broadly as regulators driving developmental progression during embryogenesis in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Diferenciación Celular , Desarrollo Embrionario , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Linaje de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Interferencia de ARN , Ubiquitinación , Vía de Señalización Wnt
8.
PLoS Genet ; 9(3): e1003375, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555289

RESUMEN

The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1) (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple levels to control germline development. CRL2(LRR-1) promotes germ cell proliferation by counteracting the DNA replication ATL-1 checkpoint pathway. CRL2(LRR-1) also participates in the mitotic proliferation/meiotic entry decision, presumably controlling the stability of meiotic promoting factors in the mitotic zone of the germline. Finally, CRL2(LRR-1) inhibits the first steps of meiotic prophase by targeting in mitotic germ cells degradation of the HORMA domain-containing protein HTP-3, required for loading synaptonemal complex components onto meiotic chromosomes. Given its widespread evolutionary conservation, CUL-2 may similarly regulate germline development in other organisms as well.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proliferación Celular , Proteínas Cullin , Meiosis/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Replicación del ADN , Células Germinativas/citología , Células Germinativas/metabolismo , Mitosis , Fosfotransferasas/metabolismo , Complejo Sinaptonémico/metabolismo
9.
J Biol Chem ; 288(3): 1967-78, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23209288

RESUMEN

The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice.


Asunto(s)
Proteínas de Caenorhabditis elegans/inmunología , Caenorhabditis elegans/inmunología , Inmunidad Innata , Macrófagos/metabolismo , Mapas de Interacción de Proteínas/inmunología , Interferencia de ARN , Animales , Evolución Biológica , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapas de Interacción de Proteínas/genética , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
10.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292632

RESUMEN

During C. elegans oocyte meiosis I, cortical actomyosin is locally remodeled to assemble a contractile ring near the spindle. In contrast to mitosis, when most cortical actomyosin converges into a contractile ring, the small oocyte ring forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness are required for contractile ring assembly within the oocyte cortical actomyosin network. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a complex of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize to patches distributed throughout the oocyte cortex during meiosis I. By reducing their function, we further show that KNL-1 and BUB-1, like CLS-2, are required for cortical microtubule stability, to limit membrane ingression throughout the oocyte, and for meiotic contractile ring assembly and polar body extrusion. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules, respectively, leads to excess or decreased membrane ingression throughout the oocyte and defective polar body extrusion. Finally, genetic backgrounds that elevate cortical microtubule levels suppress the excess membrane ingression in cls-2 mutant oocytes. These results support our hypothesis that CLS-2, as part of a sub-complex of kinetochore proteins that also co-localize to patches throughout the oocyte cortex, stabilizes microtubules to stiffen the oocyte cortex and limit membrane ingression throughout the oocyte, thereby facilitating contractile ring dynamics and the successful completion of polar body extrusion during meiosis I.

11.
Dev Cell ; 13(1): 73-86, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17609111

RESUMEN

In response to Wnt signaling during animal development, beta-catenin accumulates in nuclei to mediate the transcriptional activation of target genes. Here, we show that a highly conserved beta-catenin in the annelid Platynereis dumerilii exhibits a reiterative, nearly universal embryonic pattern of nuclear accumulation remarkably similar to that observed in the nematode Caenorhabditis elegans. Platynereis exhibits beta-catenin sister-cell asymmetries after all cell divisions that occur along the animal/vegetal axis beginning early in embryogenesis, but not after two transverse divisions that establish bilateral symmetry in the trunk. Moreover, ectopic activation of nuclear beta-catenin accumulation in Platynereis causes animal-pole sister cells, which normally have low nuclear beta-catenin levels, to adopt the fate of their vegetal-pole sisters, which normally have high nuclear beta-catenin levels. The presence of reiterative and functionally important beta-catenin asymmetries in two distantly related animal phyla suggests an ancient metazoan origin of a beta-catenin-mediated binary cell-fate specification module.


Asunto(s)
Poliquetos/embriología , Transducción de Señal/fisiología , Telofase/fisiología , beta Catenina/metabolismo , Animales , Linaje de la Célula/fisiología , Núcleo Celular/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Poliquetos/citología , Proteínas Wnt/metabolismo
12.
J Cell Biol ; 178(7): 1177-91, 2007 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-17893243

RESUMEN

Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus-centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Galpha proteins GOA-1/GPA-16. In centration- defective let-99(-) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Galpha signaling and actomyosin. During wild-type centration, NMY-2-GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16-depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(-) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Galpha signaling and LET-99 control centration by regulating polarized actomyosin contraction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Transducción de Señal , Cigoto/metabolismo , Actomiosina/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Polaridad Celular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Proteínas Fluorescentes Verdes/metabolismo , Mitosis , Modelos Biológicos , Mutación/genética , Miosina Tipo II/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Cigoto/citología
13.
J Cell Biol ; 179(1): 15-22, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17908918

RESUMEN

Proper orientation and positioning of the mitotic spindle is essential for the correct segregation of fate determinants during asymmetric cell division. Although heterotrimeric G proteins and their regulators are essential for spindle positioning in many cell types, their mechanism of action remains unclear. In this study, we show that dyrb-1, which encodes a dynein light chain, provides a functional link between heterotrimeric G protein signaling and dynein activity during spindle positioning in Caenorhabditis elegans. Embryos depleted of dyrb-1 display phenotypes similar to a weak loss of function of dynein activity, indicating that DYRB-1 is a positive regulator of dynein. We find that the depletion of dyrb-1 enhances the spindle positioning defect of weak loss of function alleles of two regulators of G protein signaling, LIN-5 and GPR-1/2, and that DYRB-1 physically associates with these two proteins. These results indicate that dynein activity functions with regulators of G protein signaling to regulate common downstream effectors during spindle positioning in the early C. elegans embryo.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/fisiología , Transducción de Señal , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Dineínas/antagonistas & inhibidores , Dineínas/fisiología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Proteínas Fluorescentes Verdes/análisis , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Modelos Biológicos , Interferencia de ARN , Proteínas Recombinantes de Fusión/análisis , Huso Acromático/ultraestructura
14.
Nature ; 435(7046): 1257-61, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15988528

RESUMEN

SCF-type E3 ubiquitin ligases are multi-protein complexes required for polyubiquitination and subsequent degradation of target proteins by the 26S proteasome. Cullins, together with the RING-finger protein Rbx1, form the catalytic core of the ligase, and recruit the substrate-recognition module. Cycles of covalent modification of cullins by the ubiquitin-like molecule Nedd8 (neddylation) and removal of Nedd8 by the COP9 signalosome (deneddylation) positively regulate E3 ligase activity. Here we report the identification and analysis of a widely conserved protein that is required for cullin neddylation in the nematode Caenorhabditis elegans and the yeast Saccharomyces cerevisiae. C. elegans DCN-1 and S. cerevisiae Dcn1p (defective in cullin neddylation) are characterized by a novel UBA-like ubiquitin-binding domain and a DUF298 domain of unknown function. Consistent with their requirements for neddylation, DCN-1 and Dcn1p directly bind Nedd8 and physically associate with cullins in both species. Moreover, overexpression of Dcn1p in yeast results in the accumulation of Nedd8-modified cullin Cdc53p. Both in vivo and in vitro experiments indicate that Dcn1p does not inhibit deneddylation of Cdc53p by the COP9 signalosome, but greatly increases the kinetics of the neddylation reaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Proteínas Cullin/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Complejo del Señalosoma COP9 , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Catálisis , Proteínas Cullin/genética , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
15.
G3 (Bethesda) ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33713117

RESUMEN

Morphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Epidermis , Morfogénesis/genética , Temperatura
16.
G3 (Bethesda) ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33681968

RESUMEN

Puromycin-sensitive aminopeptidases are found across phyla and are known to regulate the cell-cycle and play a protective role in neurodegenerative disease. PAM-1 is a puromycin-sensitive aminopeptidase important for meiotic exit and polarity establishment in the one-cell Caenorhabditis elegans embryo. Despite conservation of this aminopeptidase, little is known about its targets during development. In order to identify novel interactors, we conducted a suppressor screen and isolated four suppressing mutations in three genes that partially rescued the maternal-effect lethality of pam-1 mutants. Suppressed strains show improved embryonic viability and polarization of the anterior-posterior axis. We identified a missense mutation in wee-1.3 in one of these suppressed strains. WEE-1.3 is an inhibitory kinase that regulates maturation promoting factor. Although the missense mutation suppressed polarity phenotypes in pam-1, it does so without restoring centrosome-cortical contact or altering the cortical actomyosin cytoskeleton. To see if PAM-1 and WEE-1.3 interact in other processes, we examined oocyte maturation. Although depletion of wee-1.3 causes sterility due to precocious oocyte maturation, this effect was lessened in pam-1 worms, suggesting that PAM-1 and WEE-1.3 interact in this process. Levels of WEE-1.3 were comparable between wild-type and pam-1 strains, suggesting that WEE-1.3 is not a direct target of the aminopeptidase. Thus, we have established an interaction between PAM-1 and WEE-1.3 in multiple developmental processes and have identified suppressors that are likely to further our understanding of the role of puromycin-sensitive aminopeptidases during development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedades Neurodegenerativas , Aminopeptidasas/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero , Oocitos , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas
17.
Curr Biol ; 17(13): R514-6, 2007 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-17610833

RESUMEN

Recent reports from two laboratories working on the nematode Caenorhabditis elegans have identified both positive and negative roles for ubiquitin-mediated proteolysis in the regulation of longevity by the insulin/insulin-like growth factor signaling pathway.


Asunto(s)
Caenorhabditis elegans/fisiología , Insulina/fisiología , Longevidad/fisiología , Somatomedinas/fisiología , Ubiquitina/fisiología , Animales , Caenorhabditis elegans/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas/metabolismo , Transducción de Señal/fisiología
18.
Nature ; 425(6955): 311-6, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-13679921

RESUMEN

Many biological processes, such as development and cell cycle progression are tightly controlled by selective ubiquitin-dependent degradation of key substrates. In this pathway, the E3-ligase recognizes the substrate and targets it for degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (Elongin C-Cul2-SOCS box) complexes are two well-defined cullin-based E3-ligases. The cullin subunits serve a scaffolding function and interact through their C terminus with the RING-finger-containing protein Hrt1/Roc1/Rbx1, and through their N terminus with Skp1 or Elongin C, respectively. In Caenorhabditis elegans, the ubiquitin-ligase activity of the CUL-3 complex is required for degradation of the microtubule-severing protein MEI-1/katanin at the meiosis-to-mitosis transition. However, the molecular composition of this cullin-based E3-ligase is not known. Here we identified the BTB-containing protein MEL-26 as a component required for degradation of MEI-1 in vivo. Importantly, MEL-26 specifically interacts with CUL-3 and MEI-1 in vivo and in vitro, and displays properties of a substrate-specific adaptor. Our results suggest that BTB-containing proteins may generally function as substrate-specific adaptors in Cul3-based E3-ubiquitin ligases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin , Ligasas/química , Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Sustancias Macromoleculares , Meiosis , Microtúbulos/metabolismo , Mitosis , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas
19.
PLoS Genet ; 3(8): e128, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17676955

RESUMEN

Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Portadoras/fisiología , Citoplasma/enzimología , Citoplasma/genética , Proteínas de Drosophila/fisiología , Dineínas/fisiología , Proteínas Represoras/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Citoplasma/fisiología , Dineínas Citoplasmáticas , Proteínas de Drosophila/genética , Dineínas/antagonistas & inhibidores , Dineínas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Proteínas Represoras/genética
20.
Biol Open ; 9(6)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32493729

RESUMEN

How oocytes assemble bipolar meiotic spindles in the absence of centrosomes as microtubule organizing centers remains poorly understood. We have used live cell imaging in Caenorhabditis elegans to investigate requirements for the nuclear lamina and for conserved regulators of microtubule dynamics during oocyte meiosis I spindle assembly, assessing these requirements with respect to recently identified spindle assembly steps. We show that the nuclear lamina is required for microtubule bundles to form a peripheral cage-like structure that appears shortly after oocyte nuclear envelope breakdown and surrounds the oocyte chromosomes, although bipolar spindles still assembled in its absence. Although two conserved regulators of microtubule nucleation, RAN-1 and γ-tubulin, are not required for bipolar spindle assembly, both contribute to normal levels of spindle-associated microtubules and spindle assembly dynamics. Finally, the XMAP215 ortholog ZYG-9 and the nearly identical minus-end directed kinesins KLP-15/16 are required for proper assembly of the early cage-like structure of microtubule bundles, and for early spindle pole foci to coalesce into a bipolar structure. Our results provide a framework for assigning molecular mechanisms to recently described steps in C. elegans oocyte meiosis I spindle assembly.


Asunto(s)
Caenorhabditis elegans/fisiología , Meiosis , Microtúbulos/metabolismo , Oocitos/fisiología , Huso Acromático/metabolismo , Polos del Huso/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Centro Organizador de los Microtúbulos , Proteína de Unión al GTP ran
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA