Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(5): 400-425, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-37947217

RESUMEN

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.


Asunto(s)
Reposicionamiento de Medicamentos , Atrofia Muscular Espinal , Ratones , Animales , Preparaciones Farmacéuticas , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Músculo Esquelético/metabolismo , Perfilación de la Expresión Génica , Prednisolona/uso terapéutico , Modelos Animales de Enfermedad , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37498175

RESUMEN

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Asunto(s)
Neuronas Motoras , Atrofia Muscular Espinal , Humanos , Ratones , Animales , Neuronas Motoras/metabolismo , Desmina/genética , Desmina/metabolismo , Elastina/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patología , Terapia Genética , Modelos Animales de Enfermedad , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
3.
Gene Ther ; 30(12): 812-825, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37322133

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.


Asunto(s)
Infecciones por Citomegalovirus , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Animales , Humanos , Recién Nacido , Ratones , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Modelos Animales de Enfermedad , ADN Complementario/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Factores de Transcripción/genética , Transgenes
4.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 1-8, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953591

RESUMEN

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets. We previously described a motoneuron-specific death pathway elicited by the Fas death receptor, whereby vulnerable ALS motoneurons show an exacerbated sensitivity to Fas activation. However, the mechanisms that drive the loss of SMA motoneurons remains poorly understood. Here, we describe an in vitro model of SMA-associated degeneration using primary motoneurons derived from Smn2B/- SMA mice and show that Fas activation selectively triggers death of the proximal motoneurons. Fas-induced death of SMA motoneurons has the molecular signature of the motoneuron-selective Fas death pathway that requires activation of p38 kinase, caspase-8, -9 and -3 as well as upregulation of collapsin response mediator protein 4 (CRMP4). In addition, Rho-associated Kinase (ROCK) is required for Fas recruitment. Remarkably, we found that exogenous activation of Fas also promotes axonal elongation in both wildtype and SMA motoneurons. Axon outgrowth of motoneurons promoted by Fas requires the activity of ERK, ROCK and caspases. This work defines a dual role of Fas signaling in motoneurons that can elicit distinct responses from cell death to axonal growth.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Axones/patología
5.
Hum Mol Genet ; 27(20): 3582-3597, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29982483

RESUMEN

Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica , Luz , Atrofia Muscular Espinal/metabolismo , Animales , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
6.
Gene Ther ; 27(10-11): 505-515, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32313099

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the survival motor neuron (SMN) gene. While there are currently two approved gene-based therapies for SMA, availability, high cost, and differences in patient response indicate that alternative treatment options are needed. Optimal therapeutic strategies will likely be a combination of SMN-dependent and -independent treatments aimed at alleviating symptoms in the central nervous system and peripheral muscles. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates key metabolic and ergogenic pathways in muscle. We have recently reported significant downregulation of Klf15 in muscle of presymptomatic SMA mice. Importantly, perinatal upregulation of Klf15 via transgenic and pharmacological methods resulted in improved disease phenotypes in SMA mice, including weight and survival. In the current study, we designed an adeno-associated virus serotype 8 (AAV8) vector to overexpress a codon-optimized Klf15 cDNA under the muscle-specific Spc5-12 promoter (AAV8-Klf15). Administration of AAV8-Klf15 to severe Taiwanese Smn-/-;SMN2 or intermediate Smn2B/- SMA mice significantly increased Klf15 expression in muscle. We also observed significant activity of the AAV8-Klf15 vector in liver and heart. AAV8-mediated Klf15 overexpression moderately improved survival in the Smn2B/- model but not in the Taiwanese mice. An inability to specifically induce Klf15 expression at physiological levels in a time- and tissue-dependent manner may have contributed to this limited efficacy. Thus, our work demonstrates that an AAV8-Spc5-12 vector induces high gene expression as early as P2 in several tissues including muscle, heart, and liver, but highlights the challenges of achieving meaningful vector-mediated transgene expression of Klf15.


Asunto(s)
Dependovirus , Atrofia Muscular Espinal , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Transgénicos , Músculos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Serogrupo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
7.
Hum Mol Genet ; 26(R2): R151-R159, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977438

RESUMEN

Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of spinal cord motor neurons, muscle atrophy and infantile death or severe disability. It is caused by severe reduction of the ubiquitously expressed survival motor neuron (SMN) protein, owing to loss of the SMN1 gene. This would be completely incompatible with survival without the presence of a quasi-identical duplicated gene, SMN2, specific to humans. SMN2 harbours a silent point mutation that favours the production of transcripts lacking exon 7 and a rapidly degraded non-functional SMNΔ7 protein, but from which functional full length SMN protein is produced at very low levels (∼10%). Since the seminal discovery of the SMA-causing gene in 1995, research has focused on the development of various SMN replacement strategies culminating, in December 2016, in the approval of the first precise molecularly targeted therapy for SMA (nusinersen), and a pivotal proof of principle that therapeutic antisense oligonucleotide (ASO) treatment can effectively target the central nervous system (CNS) to treat neurological and neuromuscular disease. Nusinersen is a steric block ASO that binds the SMN2 messenger RNA and promotes exon 7 inclusion and thus increases full length SMN expression. Here, we consider the implications of this therapeutic landmark for SMA therapeutics and discuss how future developments will need to address the challenges of delivering ASO therapies to the CNS, with appropriate efficiency and activity, and how SMN-based therapy should be used in combination with complementary strategies to provide an integrated approach to treat CNS and peripheral pathologies in SMA.


Asunto(s)
Atrofia Muscular Espinal/terapia , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/uso terapéutico , Animales , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Exones , Humanos , Ratones , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Oligodesoxirribonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/administración & dosificación , ARN Mensajero/genética , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(39): 10962-7, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621445

RESUMEN

The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos/uso terapéutico , Péptidos/química , Envejecimiento , Alelos , Secuencia de Aminoácidos , Biomarcadores/sangre , Línea Celular , Humanos , Movimiento , Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacología , Fenotipo , Empalme del ARN/genética , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética
9.
Neurobiol Dis ; 106: 35-48, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28647557

RESUMEN

Loss-of-function mutations in the potassium-chloride cotransporter KCC3 lead to Andermann syndrome, a severe sensorimotor neuropathy characterized by areflexia, amyotrophy and locomotor abnormalities. The molecular events responsible for axonal loss remain poorly understood. Here, we establish that global or neuron-specific KCC3 loss-of-function in mice leads to early neuromuscular junction (NMJ) abnormalities and muscular atrophy that are consistent with the pre-synaptic neurotransmission defects observed in patients. KCC3 depletion does not modify chloride handling, but promotes an abnormal electrical activity among primary motoneurons and mislocalization of Na+/K+-ATPase α1 in spinal cord motoneurons. Moreover, the activity-targeting drug carbamazepine restores Na+/K+-ATPase α1 localization and reduces NMJ denervation in Slc12a6-/- mice. We here propose that abnormal motoneuron electrical activity contributes to the peripheral neuropathy observed in Andermann syndrome.


Asunto(s)
Agenesia del Cuerpo Calloso/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Terminales Presinápticos/metabolismo , Simportadores/deficiencia , Transmisión Sináptica/fisiología , Agenesia del Cuerpo Calloso/tratamiento farmacológico , Agenesia del Cuerpo Calloso/patología , Animales , Carbamazepina/farmacología , Células Cultivadas , Cloruros/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Neurotransmisores/farmacología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Simportadores/genética , Transmisión Sináptica/efectos de los fármacos
10.
Hum Mol Genet ; 24(12): 3440-56, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25765661

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that primarily affects motoneurons in the brain and spinal cord. Astrocyte and microglia activation as well as skeletal muscle atrophy are also typical hallmarks of the disease. However, the functional relationship between astrocytes, microglia and skeletal muscle in the pathogenic process remains unclear. Here, we report that the tumor necrosis factor-like weak inducer of apoptosis (Tweak) and its receptor Fn14 are aberrantly expressed in spinal astrocytes and skeletal muscle of SOD1(G93A) mice. We show that Tweak induces motoneuron death, stimulates astrocytic interleukin-6 release and astrocytic proliferation in vitro. The genetic ablation of Tweak in SOD1(G93A) mice significantly reduces astrocytosis, microgliosis and ameliorates skeletal muscle atrophy. The peripheral neutralization of Tweak through antagonistic anti-Tweak antibody ameliorates muscle pathology and notably, decreases microglial activation in SOD1(G93A) mice. Unexpectedly, none of these approaches improved motor function, lifespan and motoneuron survival. Our work emphasizes the multi-systemic aspect of ALS, and suggests that a combinatorial therapy targeting multiple cell types will be instrumental to halt the neurodegenerative process.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Gliosis/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Factores de Necrosis Tumoral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Muerte Celular , Proliferación Celular , Citocina TWEAK , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Interleucina-6/biosíntesis , Esperanza de Vida , Ratones , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Placa Motora/genética , Placa Motora/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Receptores de Superficie Celular/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Receptor de TWEAK , Factores de Necrosis Tumoral/metabolismo , Regulación hacia Arriba
11.
Hum Mol Genet ; 23(13): 3432-44, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24497575

RESUMEN

Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/-)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/-)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/-)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/-)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing ß cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/-)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.


Asunto(s)
Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Páncreas/metabolismo , Páncreas/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Masculino , Ratones , Obesidad/genética , Obesidad/metabolismo , Fenotipo
12.
EMBO Rep ; 15(5): 540-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24668263

RESUMEN

A receptor-ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-ßR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways. This distinct response involves a compartment-specific activation of LIGHT signals, with somatic activation-inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons.


Asunto(s)
Axones/fisiología , Neuronas Motoras/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Linfocitos B/inmunología , Butadienos/farmacología , Caspasa 9/metabolismo , Inhibidores de Caspasas/farmacología , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonoides/farmacología , Receptor beta de Linfotoxina/antagonistas & inhibidores , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Noqueados , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Nervio Ciático/lesiones , Nervio Ciático/patología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/biosíntesis
13.
Pflugers Arch ; 467(2): 351-66, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24809506

RESUMEN

Small RGK GTPases, Rad, Gem, Rem1, and Rem2, are potent inhibitors of high-voltage-activated (HVA) Ca(2+) channels expressed in heterologous expression systems. However, the role of this regulation has never been clearly demonstrated in the nervous system. Using transcriptional analysis, we show that peripheral nerve injury specifically upregulates Gem in mice dorsal root ganglia. Following nerve injury, protein expression was increased in ganglia and peripheral nerve, mostly under its phosphorylated form. This was confirmed in situ and in vitro in dorsal root ganglia sensory neurons. Knockdown of endogenous Gem, using specific small-interfering RNA (siRNA), increased the HVA Ca(2+) current only in the large-somatic-sized neurons. Combining pharmacological analysis of the HVA Ca(2+) currents together with Gem siRNA-transfection of larger sensory neurons, we demonstrate that only the P/Q-type Ca(2+) channels were enhanced. In vitro analysis of Gem affinity to various CaVßx-CaV2.x complexes and immunocytochemical studies of Gem and CaVß expression in sensory neurons suggest that the specific inhibition of the P/Q channels relies on both the regionalized upregulation of Gem and the higher sensitivity of the endogenous CaV2.1-CaVß4 pair in a subset of sensory neurons including the proprioceptors. Finally, pharmacological inhibition of P/Q-type Ca(2+) current reduces neurite branching of regenerating axotomized neurons. Taken together, the present results indicate that a Gem-dependent P/Q-type Ca(2+) current inhibition may contribute to general homeostatic mechanisms following a peripheral nerve injury.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuritas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/genética , Células Cultivadas , Femenino , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Regeneración Nerviosa , Neuritas/fisiología , Plasticidad Neuronal
14.
Dev Sci ; 17(4): 636-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24636133

RESUMEN

Pitch is often described metaphorically: for example, Farsi and Turkish speakers use a 'thickness' metaphor (low sounds are 'thick' and high sounds are 'thin'), while German and English speakers use a height metaphor ('low', 'high'). This study examines how child and adult speakers of Farsi, Turkish, and German map pitch and thickness using a cross-modal association task. All groups, except for German children, performed significantly better than chance. German-speaking adults' success suggests the pitch-to-thickness association can be learned by experience. But the fact that German children were at chance indicates that this learning takes time. Intriguingly, Farsi and Turkish children's performance suggests that learning cross-modal associations can be boosted through experience with consistent metaphorical mappings in the input language.


Asunto(s)
Desarrollo del Lenguaje , Percepción de la Altura Tonal , Adulto , Niño , Desarrollo Infantil , Preescolar , Formación de Concepto , Alemania , Humanos , Irán , Lenguaje , Aprendizaje , Lingüística , Metáfora , Países Bajos , Psicolingüística , Sonido , Turquía , Conducta Verbal
15.
Ann Neurol ; 72(2): 256-68, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22926856

RESUMEN

OBJECTIVE: Spinal muscular atrophy (SMA) is the number 1 genetic killer of young children. It is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although SMA is primarily a motor neuron disease, metabolism abnormalities such as metabolic acidosis, abnormal fatty acid metabolism, hyperlipidemia, and hyperglycemia have been reported in SMA patients. We thus initiated an in-depth analysis of glucose metabolism in SMA. METHODS: Glucose metabolism and pancreas development were investigated in the Smn(2B/-) intermediate SMA mouse model and type I SMA patients. RESULTS: Here, we demonstrate in an SMA mouse model a dramatic cell fate imbalance within pancreatic islets, with a predominance of glucagon-producing α cells at the expense of insulin-producing ß cells. These SMA mice display fasting hyperglycemia, hyperglucagonemia, and glucose resistance. We demonstrate similar abnormalities in pancreatic islets from deceased children with the severe infantile form of SMA in association with supportive evidence of glucose intolerance in at least a subset of such children. INTERPRETATION: Our results indicate that defects in glucose metabolism may play an important contributory role in SMA pathogenesis.


Asunto(s)
Glucemia/metabolismo , Trastornos del Metabolismo de la Glucosa/etiología , Enfermedades Pancreáticas/etiología , Atrofias Musculares Espinales de la Infancia/complicaciones , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/genética , Glucemia/genética , Proliferación Celular , Modelos Animales de Enfermedad , Glucagón/sangre , Humanos , Etiquetado Corte-Fin in Situ , Insulina/sangre , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Enfermedades Pancreáticas/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
16.
Nutr Clin Pract ; 38(4): 871-880, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36504203

RESUMEN

BACKGROUND: An increasing number of families with children who have spinal muscular atrophy (SMA) are incorporating a special amino acid diet into their child's feeding regimens. Characteristics of the diet include high-carbohydrate and low-fat content with added probiotics. However, because of insufficient evidenced-based research, clinicians are unable to prescribe or endorse this diet. Our aim was to assess the tolerability of an adapted version of the traditional amino acid diet in children with SMA type I. METHODS: Children with SMA type I were recruited if they were enterally fed and experienced at least one gastrointestinal symptom (reflux, vomiting, constipation, and/or diarrhea). Children were transitioned to an amino acid formula (Neocate Syneo-Nutricia) for 8 weeks. Feeding tolerance was measured weekly by telephone consultation to monitor reflux, vomiting, stool consistency, and frequency. RESULTS: Fourteen children were recruited, the mean age was 4.1 years (±1.2 SD), and 64% of participants were female. The mean resting energy expenditure determined by indirect calorimetry was 51.5 kcal/kg (±7 SD). The most common gastrointestinal complaint before switching to the amino acid formula was constipation, which was reported in 12 of 14 (85%) patients, of which 10 of the 12 (83%) children required daily stool softeners/laxatives to help regulate bowel function. After 8 weeks on the amino acid formula, 10 out of 12 (83%) children stopped or reduced constipation medication. CONCLUSION: Children with SMA type I who display gastrointestinal symptoms such as constipation and reflux may benefit from an amino acid formula that is fortified with probiotics.


Asunto(s)
Enfermedades Gastrointestinales , Atrofias Musculares Espinales de la Infancia , Humanos , Niño , Femenino , Preescolar , Masculino , Proyectos Piloto , Atrofias Musculares Espinales de la Infancia/complicaciones , Derivación y Consulta , Teléfono , Estreñimiento/tratamiento farmacológico , Estreñimiento/etiología , Vómitos/complicaciones , Aminoácidos/uso terapéutico
17.
Biomedicines ; 11(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37893074

RESUMEN

The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.

18.
Hum Mol Genet ; 19(8): 1468-78, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20097679

RESUMEN

Spinal muscular atrophy (SMA) is an inherited disease resulting in the highest mortality of children under the age of two. SMA is caused by mutations or deletions in the survival motor neuron 1 (SMN1) gene, leading to aberrant neuromuscular junction (NMJ) development and the loss of spinal cord alpha-motor neurons. Here, we show that Smn depletion leads to increased activation of RhoA, a major regulator of actin dynamics, in the spinal cord of an intermediate SMA mouse model. Treating these mice with Y-27632, which inhibits ROCK, a direct downstream effector of RhoA, dramatically improves their survival. This lifespan rescue is independent of Smn expression and is accompanied by an improvement in the maturation of the NMJs and an increase in muscle fiber size in the SMA mice. Our study presents evidence linking disruption of actin cytoskeletal dynamics to SMA pathogenesis and, for the first time, identifies RhoA effectors as viable targets for therapeutic intervention in the disease.


Asunto(s)
Atrofia Muscular Espinal/enzimología , Atrofia Muscular Espinal/mortalidad , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína de Unión al GTP rhoA/metabolismo , Amidas/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Atrofia Muscular Espinal/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Piridinas/administración & dosificación , Médula Espinal/enzimología , Médula Espinal/metabolismo , Sobrevida , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética
19.
BMC Med ; 10: 24, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22397316

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (SMN1) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil. METHODS: Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at P < 0.05. For the remaining analyses, the Student's two-tail t test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at P < 0.05. RESULTS: Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific. CONCLUSIONS: Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK inhibitors as a therapeutic strategy for SMA and for other degenerative diseases characterized by muscular atrophy and postsynaptic immaturity.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular Espinal/tratamiento farmacológico , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/administración & dosificación , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Animales , Células del Asta Anterior/efectos de los fármacos , Células del Asta Anterior/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Marcha/efectos de los fármacos , Longevidad/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Placa Motora/efectos de los fármacos , Placa Motora/patología , Placa Motora/fisiopatología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Miogenina/metabolismo , Fenotipo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Aumento de Peso/efectos de los fármacos
20.
Skelet Muscle ; 12(1): 18, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902978

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle. METHODS: We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations. RESULTS: Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models. CONCLUSIONS: Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.


Asunto(s)
Atrofia Muscular Espinal , Receptores del Factor de Necrosis Tumoral , Animales , Citocina TWEAK , Modelos Animales de Enfermedad , Ratones , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , ARN Interferente Pequeño/genética , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA