Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(1): 32-37, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901545

RESUMEN

The introduction of exome sequencing in the clinic has sparked tremendous optimism for the future of rare disease diagnosis, and there is exciting opportunity to further leverage these advances. To provide diagnostic clarity to all of these patients, however, there is a critical need for the field to develop and implement strategies to understand the mechanisms underlying all rare diseases and translate these to clinical care.


Asunto(s)
Secuenciación del Exoma/tendencias , Enfermedades Raras/diagnóstico , Investigación Biomédica Traslacional/métodos , Exoma , Pruebas Genéticas , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Enfermedades Raras/genética , Análisis de Secuencia de ADN/métodos , Secuenciación del Exoma/métodos
2.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474920

RESUMEN

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Asunto(s)
Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Mutación/genética , Proteínas de Unión al ARN/genética , Convulsiones/genética , Adolescente , Adulto , Edad de Inicio , Anciano de 80 o más Años , Animales , Secuencia de Bases , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Evolución Molecular , Femenino , Eliminación de Gen , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Persona de Mediana Edad , Mutación Missense/genética , Neuronas/metabolismo , Neuronas/patología , Linaje , Estabilidad Proteica , Convulsiones/diagnóstico por imagen
3.
Nat Rev Genet ; 25(6): 401-415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38238519

RESUMEN

Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.


Asunto(s)
Pruebas Genéticas , Genómica , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Pruebas Genéticas/métodos , Genómica/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética
4.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516086

RESUMEN

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Asunto(s)
Ataxia Cerebelosa , Expansión de las Repeticiones de ADN , Intrones , Humanos , Australia , Canadá , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Intrones/genética , Expansión de las Repeticiones de ADN/genética
5.
Am J Hum Genet ; 109(11): 1947-1959, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332610

RESUMEN

The past decade has witnessed a rapid evolution in rare disease (RD) research, fueled by the availability of genome-wide (exome and genome) sequencing. In 2011, as this transformative technology was introduced to the research community, the Care4Rare Canada Consortium was launched: initially as FORGE, followed by Care4Rare, and Care4Rare SOLVE. Over what amounted to three eras of diagnosis and discovery, the Care4Rare Consortium used exome sequencing and, more recently, genome and other 'omic technologies to identify the molecular cause of unsolved RDs. We achieved a diagnostic yield of 34% (623/1,806 of participating families), including the discovery of deleterious variants in 121 genes not previously associated with disease, and we continue to study candidate variants in novel genes for 145 families. The Consortium has made significant contributions to RD research, including development of platforms for data collection and sharing and instigating a Canadian network to catalyze functional characterization research of novel genes. The Consortium was instrumental to implementing genome-wide sequencing as a publicly funded test for RD diagnosis in Canada. Despite the successes of the past decade, the challenge of solving all RDs remains enormous, and the work is far from over. We must leverage clinical and 'omic data for secondary use, develop tools and policies to support safe data sharing, continue to explore the utility of new and emerging technologies, and optimize research protocols to delineate complex disease mechanisms. Successful approaches in each of these realms is required to offer diagnostic clarity to all families with RDs.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Canadá , Exoma/genética , Secuenciación del Exoma , Estudios de Asociación Genética
6.
Am J Hum Genet ; 109(10): 1923-1931, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36067766

RESUMEN

MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Animales , ADN Complementario , Drosophila/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas de la Membrana , Microcefalia/genética , Proteínas de Microfilamentos , Mutación Missense/genética , Malformaciones del Sistema Nervioso/genética , Fenotipo
7.
Hum Mol Genet ; 31(4): 614-624, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34542157

RESUMEN

SHQ1 is essential for biogenesis of H/ACA ribonucleoproteins, a class of molecules important for processing ribosomal RNAs, modifying spliceosomal small nuclear RNAs and stabilizing telomerase. Components of the H/ACA ribonucleoprotein complex have been linked to neurological developmental defects. Here, we report two sibling pairs from unrelated families with compound heterozygous variants in SHQ1. Exome sequencing was used to detect disease causing variants, which were submitted to 'matching' platforms linked to MatchMaker Exchange. Phenotype comparisons supported these matches. The affected individuals present with early-onset dystonia, with individuals from one family displaying additional neurological phenotypes, including neurodegeneration. As a result of cerebrospinal fluid studies suggesting possible abnormal dopamine metabolism, a trial of levodopa replacement therapy was started but no clear response was noted. We show that fibroblasts from affected individuals have dramatic loss of SHQ1 protein. Variants from both families were expressed in Saccharomyces cerevisiae, resulting in a strong reduction in H/ACA snoRNA production and remarkable defects in rRNA processing and ribosome formation. Our study identifies SHQ1 as associated with neurological disease, including early-onset dystonia, and begins to delineate the molecular etiology of this novel condition.


Asunto(s)
Distonía , Trastornos Distónicos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Saccharomyces cerevisiae , Distonía/genética , Trastornos Distónicos/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Hum Mol Genet ; 31(21): 3597-3612, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35147173

RESUMEN

Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.


Asunto(s)
Encefalopatías , Enfermedades Mitocondriales , Animales , Ratones , Encefalopatías/genética , Encefalopatías/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteómica
9.
Am J Hum Genet ; 108(10): 2017-2023, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34587489

RESUMEN

ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.


Asunto(s)
Parálisis Cerebral/patología , Discapacidad Intelectual/patología , Leucoencefalopatías/patología , Monoacilglicerol Lipasas/genética , Mutación , Paraplejía Espástica Hereditaria/patología , Adolescente , Adulto , Parálisis Cerebral/etiología , Parálisis Cerebral/metabolismo , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Discapacidad Intelectual/etiología , Discapacidad Intelectual/metabolismo , Leucoencefalopatías/etiología , Leucoencefalopatías/metabolismo , Masculino , Monoacilglicerol Lipasas/deficiencia , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/etiología , Paraplejía Espástica Hereditaria/metabolismo , Adulto Joven
10.
Am J Hum Genet ; 108(4): 749-756, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33743206

RESUMEN

The DNA damage-binding protein 1 (DDB1) is part of the CUL4-DDB1 ubiquitin E3 ligase complex (CRL4), which is essential for DNA repair, chromatin remodeling, DNA replication, and signal transduction. Loss-of-function variants in genes encoding the complex components CUL4 and PHIP have been reported to cause syndromic intellectual disability with hypotonia and obesity, but no phenotype has been reported in association with DDB1 variants. Here, we report eight unrelated individuals, identified through Matchmaker Exchange, with de novo monoallelic variants in DDB1, including one recurrent variant in four individuals. The affected individuals have a consistent phenotype of hypotonia, mild to moderate intellectual disability, and similar facies, including horizontal or slightly bowed eyebrows, deep-set eyes, full cheeks, a short nose, and large, fleshy and forward-facing earlobes, demonstrated in the composite face generated from the cohort. Digital anomalies, including brachydactyly and syndactyly, were common. Three older individuals have obesity. We show that cells derived from affected individuals have altered DDB1 function resulting in abnormal DNA damage signatures and histone methylation following UV-induced DNA damage. Overall, our study adds to the growing family of neurodevelopmental phenotypes mediated by disruption of the CRL4 ubiquitin ligase pathway and begins to delineate the phenotypic and molecular effects of DDB1 misregulation.


Asunto(s)
Alelos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Mutación , Trastornos del Neurodesarrollo/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Fenotipo , Síndrome
11.
J Hum Genet ; 69(2): 101-105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37904029

RESUMEN

Partial duplications of genes can be challenging to detect and interpret and, therefore, likely represent an underreported cause of human disease. X-linked dominant variants in ATRX are associated with Alpha-thalassemia/impaired intellectual development syndrome, X-linked (ATR-X syndrome), a clinically heterogeneous disease generally presenting with intellectual disability, hypotonia, characteristic facies, genital anomalies, and alpha-thalassemia. We describe an affected male with a de novo hemizygous intragenic duplication of ~43.6 kb in ATRX, detected by research genome sequencing following non-diagnostic clinical testing. RNA sequencing and DNA methylation episignature analyses were central in variant interpretation, and this duplication was subsequently interpreted as disease-causing. This represents the smallest reported tandem duplication within ATRX associated with disease. This case demonstrates the diagnostic utility of integrating multiple omics technologies, which can ultimately lead to a definitive diagnosis for rare disease patients.


Asunto(s)
Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Talasemia alfa , Humanos , Masculino , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética
12.
Am J Med Genet A ; 194(3): e63455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921537

RESUMEN

Our understanding of genetic and phenotypic heterogeneity associated with the clinical spectrum of rare diseases continues to expand. Thorough phenotypic descriptions and model organism functional studies are valuable tools in dissecting the biology of the disease process. Kinesin genes are well known to be associated with specific disease phenotypes and a subset of kinesin genes, including KIF21A, have been associated with more than one disease. Here we report two patients with KIF21A variants identified by exome sequencing; one with biallelic variants, supporting a novel KIF21A related syndrome with recessive inheritance and the second report of this condition, and another with a heterozygous de novo variant allele representing a phenotypic expansion of the condition described to date. We provide detailed phenotypic information on both families, including a novel neuropathology finding of neuroaxonal dystrophy associated with biallelic variants in KIF21A. Additionally, we studied the dominant variant in Saccharomyces cerevisiae to assess variant pathogenicity and found that this variant appears to impair protein function. KIF21A associated disease has mounting evidence for phenotypic heterogeneity; further patients and study of an allelic series are required to define the phenotypic spectrum and further explore the molecular etiology for each of these conditions.


Asunto(s)
Cinesinas , Enfermedades del Sistema Nervioso , Humanos , Cinesinas/genética , Fenotipo , Mutación
13.
Am J Med Genet A ; 194(3): e63466, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37949664

RESUMEN

Activating variants in the PIK3CA gene cause a heterogeneous spectrum of disorders that involve congenital or early-onset segmental/focal overgrowth, now referred to as PIK3CA-related overgrowth spectrum (PROS). Historically, the clinical diagnoses of patients with PROS included a range of distinct syndromes, including CLOVES syndrome, dysplastic megalencephaly, hemimegalencephaly, focal cortical dysplasia, Klippel-Trenaunay syndrome, CLAPO syndrome, fibroadipose hyperplasia or overgrowth, hemihyperplasia multiple lipomatosis, and megalencephaly capillary malformation-polymicrogyria (MCAP) syndrome. MCAP is a sporadic overgrowth disorder that exhibits core features of progressive megalencephaly, vascular malformations, distal limb malformations, cortical brain malformations, and connective tissue dysplasia. In 2012, our research group contributed to the identification of predominantly mosaic, gain-of-function variants in PIK3CA as an underlying genetic cause of the syndrome. Mosaic variants are technically more difficult to detect and require implementation of more sensitive sequencing technologies and less stringent variant calling algorithms. In this study, we demonstrated the utility of deep sequencing using the Illumina TruSight Oncology 500 (TSO500) sequencing panel in identifying variants with low allele fractions in a series of patients with PROS and suspected mosaicism: pathogenic, mosaic PIK3CA variants were identified in all 13 individuals, including 6 positive controls. This study highlights the importance of screening for low-level mosaic variants in PROS patients. The use of targeted panels with deep sequencing in clinical genetic testing laboratories would improve diagnostic yield and accuracy within this patient population.


Asunto(s)
Anomalías Múltiples , Megalencefalia , Anomalías Musculoesqueléticas , Enfermedades Cutáneas Vasculares , Telangiectasia/congénito , Malformaciones Vasculares , Humanos , Mutación , Anomalías Musculoesqueléticas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Am J Med Genet A ; 194(5): e63522, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38131126

RESUMEN

Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Retroelementos , Humanos , Mutación , Intrones/genética , Retroelementos/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Enfermedades Raras/genética , Desarrollo Sexual , Factor Esteroidogénico 1/genética
15.
Hum Mol Genet ; 30(9): 739-757, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33601405

RESUMEN

EFTUD2 is mutated in patients with mandibulofacial dysostosis with microcephaly (MFDM). We generated a mutant mouse line with conditional mutation in Eftud2 and used Wnt1-Cre2 to delete it in neural crest cells. Homozygous deletion of Eftud2 causes brain and craniofacial malformations, affecting the same precursors as in MFDM patients. RNAseq analysis of embryonic heads revealed a significant increase in exon skipping and increased levels of an alternatively spliced Mdm2 transcript lacking exon 3. Exon skipping in Mdm2 was also increased in O9-1 mouse neural crest cells after siRNA knock-down of Eftud2 and in MFDM patient cells. Moreover, we found increased nuclear P53, higher expression of P53-target genes and increased cell death. Finally, overactivation of the P53 pathway in Eftud2 knockdown cells was attenuated by overexpression of non-spliced Mdm2, and craniofacial development was improved when Eftud2-mutant embryos were treated with Pifithrin-α, an inhibitor of P53. Thus, our work indicates that the P53-pathway can be targeted to prevent craniofacial abnormalities and shows a previously unknown role for alternative splicing of Mdm2 in the etiology of MFDM.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U5 , Proteína p53 Supresora de Tumor , Animales , Homocigoto , Humanos , Ratones , Mutación , Factores de Elongación de Péptidos/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Eliminación de Secuencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Annu Rev Genomics Hum Genet ; 21: 351-372, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32283948

RESUMEN

Accurate diagnosis is the cornerstone of medicine; it is essential for informed care and promoting patient and family well-being. However, families with a rare genetic disease (RGD) often spend more than five years on a diagnostic odyssey of specialist visits and invasive testing that is lengthy, costly, and often futile, as 50% of patients do not receive a molecular diagnosis. The current diagnostic paradigm is not well designed for RGDs, especially for patients who remain undiagnosed after the initial set of investigations, and thus requires an expansion of approaches in the clinic. Leveraging opportunities to participate in research programs that utilize new technologies to understand RGDs is an important path forward for patients seeking a diagnosis. Given recent advancements in such technologies and international initiatives, the prospect of identifying a molecular diagnosis for all patients with RGDs has never been so attainable, but achieving this goal will require global cooperation at an unprecedented scale.


Asunto(s)
Genoma Humano , Genómica/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Humanos
17.
Am J Hum Genet ; 107(6): 1178-1185, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242396

RESUMEN

We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.


Asunto(s)
Discapacidades del Desarrollo/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Degradación de ARNm Mediada por Codón sin Sentido , Adolescente , Encéfalo/anomalías , Niño , Preescolar , Consanguinidad , Discapacidades del Desarrollo/metabolismo , Salud de la Familia , Femenino , Eliminación de Gen , Ligamiento Genético , Cardiopatías Congénitas/genética , Homocigoto , Humanos , Lactante , Masculino , Linaje , Fenotipo , Fosforilación , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , RNA-Seq , Transactivadores/metabolismo , Adulto Joven
18.
Am J Hum Genet ; 106(2): 143-152, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032513

RESUMEN

Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.


Asunto(s)
Modelos Animales de Enfermedad , Marcadores Genéticos , Enfermedades Raras/genética , Enfermedades Raras/terapia , Sistema de Registros/normas , Animales , Bases de Datos Factuales , Genómica , Humanos , Enfermedades Raras/epidemiología
19.
J Intern Med ; 294(4): 397-412, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211972

RESUMEN

Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.


Asunto(s)
Medicina de Precisión , Enfermedades Raras , Humanos , Medicina de Precisión/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Enfermedades Raras/terapia , Genómica/métodos , Análisis de Secuencia de ADN , Progresión de la Enfermedad
20.
Genet Med ; 25(11): 100948, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551668

RESUMEN

PURPOSE: Exome and genome sequencing have rapidly transitioned from research methods to widely used clinical tests for diagnosing rare genetic diseases. We sought to synthesize the topics covered and appraise the development processes of clinical guidance documents generated by genetics professional organizations. METHODS: We conducted a scoping review of guidance documents published since 2010, systematically identified in peer-reviewed and gray literature, using established methods and reporting guidelines. We coded verbatim recommendations by topic using content analysis and critically appraised documents using the Appraisal of Guidelines Research and Evaluation (AGREE) II tool. RESULTS: We identified 30 guidance documents produced by 8 organizations (2012-2022), yielding 611 recommendations covering 21 topics. The most common topic related to findings beyond the primary testing indication. Mean AGREE II scores were low across all 6 quality domains; scores for items related to rigor of development were among the lowest. More recently published documents generally received higher scores. CONCLUSION: Guidance documents included a broad range of recommendations but were of low quality, particularly in their rigor of development. Developers should consider using tools such as AGREE II and basing recommendations on living knowledge syntheses to improve guidance development in this evolving space.


Asunto(s)
Exoma , Sociedades , Humanos , Exoma/genética , Mapeo Cromosómico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA