Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 20(8): e1011356, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39110742

RESUMEN

Portability of trans-ancestral polygenic risk scores is often confounded by differences in linkage disequilibrium and genetic architecture between ancestries. Recent literature has shown that prioritizing GWAS SNPs with functional genomic evidence over strong association signals can improve model portability. We leveraged three RegulomeDB-derived functional regulatory annotations-SURF, TURF, and TLand-to construct polygenic risk models across a set of quantitative and binary traits highlighting functional mutations tagged by trait-associated tissue annotations. Tissue-specific prioritization by TURF and TLand provide a significant improvement in model accuracy over standard polygenic risk score (PRS) models across all traits. We developed the Trans-ancestral Iterative Tissue Refinement (TITR) algorithm to construct PRS models that prioritize functional mutations across multiple trait-implicated tissues. TITR-constructed PRS models show increased predictive accuracy over single tissue prioritization. This indicates our TITR approach captures a more comprehensive view of regulatory systems across implicated tissues that contribute to variance in trait expression.


Asunto(s)
Algoritmos , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Herencia Multifactorial/genética , Humanos , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad , Genómica/métodos , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo/genética , Modelos Genéticos , Especificidad de Órganos/genética , Fenotipo , Puntuación de Riesgo Genético
2.
PLoS One ; 19(3): e0298688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478504

RESUMEN

Understanding the functional effects of sequence variation is crucial in genomics. Individual human genomes contain millions of variants that contribute to phenotypic variability and disease risks at the population level. Because variants rarely act in isolation, we must consider potential interactions of neighboring variants to accurately predict functional effects. We can accomplish this using haplotagging, which matches sequencing reads to their parental haplotypes using alleles observed at known heterozygous variants. However, few published tools for haplotagging exist and these share several technical and usability-related shortcomings that limit applicability, in particular a lack of insight or control over error rates, and lack of key metrics on the underlying sources of haplotagging error. Here we present HaplotagLR: a user-friendly tool that haplotags long sequencing reads based on a multinomial model and existing phased variant lists. HaplotagLR is user-configurable and includes a basic error model to control the empirical FDR in its output. We show that HaplotagLR outperforms the leading haplotagging method in simulated datasets, especially at high levels of specificity, and displays 7% greater sensitivity in haplotagging real data. HaplotagLR advances both the immediate utility of haplotagging and paves the way for further improvements to this important method.


Asunto(s)
Genoma Humano , Genómica , Humanos , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Algoritmos
3.
medRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746091

RESUMEN

Tandem repeat sequences comprise approximately 8% of the human genome and are linked to more than 50 neurodegenerative disorders. Accurate characterization of disease-associated repeat loci remains resource intensive and often lacks high resolution genotype calls. We introduce a multiplexed, targeted nanopore sequencing panel and HMMSTR, a sequence-based tandem repeat copy number caller. HMMSTR outperforms current signal- and sequence-based callers relative to two assemblies and we show it performs with high accuracy in heterozygous regions and at low read coverage. The flexible panel allows us to capture disease associated regions at an average coverage of >150x. Using these tools, we successfully characterize known or suspected repeat expansions in patient derived samples. In these samples we also identify unexpected expanded alleles at tandem repeat loci not previously associated with the underlying diagnosis. This genotyping approach for tandem repeat expansions is scalable, simple, flexible, and accurate, offering significant potential for diagnostic applications and investigation of expansion co-occurrence in neurodegenerative disorders.

4.
Nat Neurosci ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103556

RESUMEN

Although the molecular composition and architecture of synapses have been widely explored, much less is known about what genetic programs directly activate synaptic gene expression and how they are modulated. Here, using Caenorhabditis elegans dopaminergic neurons, we reveal that EGL-43/MECOM and FOS-1/FOS control an activity-dependent synaptogenesis program. Loss of either factor severely reduces presynaptic protein expression. Both factors bind directly to promoters of synaptic genes and act together with CUT homeobox transcription factors to activate transcription. egl-43 and fos-1 mutually promote each other's expression, and increasing the binding affinity of FOS-1 to the egl-43 locus results in increased presynaptic protein expression and synaptic function. EGL-43 regulates the expression of multiple transcription factors, including activity-regulated factors and developmental factors that define multiple aspects of dopaminergic identity. Together, we describe a robust genetic program underlying activity-regulated synapse formation during development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA