Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34588290

RESUMEN

The association of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with human angiotensin-converting enzyme 2 (hACE2) represents the first required step for cellular entry. SARS-CoV-2 has continued to evolve with the emergence of several novel variants, and amino acid changes in the RBD have been implicated with increased fitness and potential for immune evasion. Reliably predicting the effect of amino acid changes on the ability of the RBD to interact more strongly with the hACE2 can help assess the implications for public health and the potential for spillover and adaptation into other animals. Here, we introduce a two-step framework that first relies on 48 independent 4-ns molecular dynamics (MD) trajectories of RBD-hACE2 variants to collect binding energy terms decomposed into Coulombic, covalent, van der Waals, lipophilic, generalized Born solvation, hydrogen bonding, π-π packing, and self-contact correction terms. The second step implements a neural network to classify and quantitatively predict binding affinity changes using the decomposed energy terms as descriptors. The computational base achieves a validation accuracy of 82.8% for classifying single-amino acid substitution variants of the RBD as worsening or improving binding affinity for hACE2 and a correlation coefficient of 0.73 between predicted and experimentally calculated changes in binding affinities. Both metrics are calculated using a fivefold cross-validation test. Our method thus sets up a framework for screening binding affinity changes caused by unknown single- and multiple-amino acid changes offering a valuable tool to predict host adaptation of SARS-CoV-2 variants toward tighter hACE2 binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Interacciones Huésped-Patógeno/genética , Redes Neurales de la Computación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sustitución de Aminoácidos , Sitios de Unión/genética , Humanos , Simulación de Dinámica Molecular , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
Angew Chem Int Ed Engl ; 60(18): 10273-10278, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33684258

RESUMEN

The receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike (S) protein plays a central role in mediating the first step of virus infection to cause disease: virus binding to angiotensin-converting enzyme 2 (ACE2) receptors on human host cells. Therefore, S/RBD is an ideal target for blocking and neutralization therapies to prevent and treat coronavirus disease 2019 (COVID-19). Using a target-based selection approach, we developed oligonucleotide aptamers containing a conserved sequence motif that specifically targets S/RBD. Synthetic aptamers had high binding affinity for S/RBD-coated virus mimics (KD ≈7 nM) and also blocked interaction of S/RBD with ACE2 receptors (IC50 ≈5 nM). Importantly, aptamers were able to neutralize S protein-expressing viral particles and prevent host cell infection, suggesting a promising COVID-19 therapy strategy.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Aptámeros de Nucleótidos/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Antivirales/química , Aptámeros de Nucleótidos/química , Secuencia de Bases , COVID-19/metabolismo , Células HEK293 , Humanos , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/química , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química
3.
Toxicol Sci ; 192(1): 117-128, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36782369

RESUMEN

Despite progress describing the effects of persistent organic pollutants (POPs) on the central nervous system, the effect of POPs on enteric nervous system (ENS) function remains underexplored. We studied the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a POP, and a potent aryl hydrocarbon receptor (AHR) ligand, on the ENS and intestinal motility in mice. C57Bl/6J mice treated with TCDD (2.4 µg/kg body weight) for 8 weeks (once per week) exhibited significant delay in intestinal motility as shown by reduced stool frequency, prolonged intestinal transit time, and a persistence of dye in the jejunum compared to control mice with maximal dye retention in the ileum. TCDD significantly increased Cyp1a1 expression, an AHR target gene, and reduced the total number of neurons and affected nitrergic neurons in cells isolated from WT mice, but not Ahr-/- mice. In immortalized fetal enteric neuronal cells, TCDD-induced nuclear translocation of AHR as well as increased Cyp1a1 expression. AHR activation did not affect neuronal proliferation. However, AHR activation resulted in enteric neuronal toxicity, specifically, nitrergic neurons. Our results demonstrate that TCDD adversely affects nitrergic neurons and thereby contributes to delayed intestinal motility. These findings suggest that AHR signaling in the ENS may play a role in modulating TCDD-induced gastrointestinal pathophysiology.


Asunto(s)
Contaminantes Ambientales , Neuronas Nitrérgicas , Dibenzodioxinas Policloradas , Animales , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Neuronas Nitrérgicas/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Ratones Endogámicos C57BL
4.
J Photochem Photobiol B ; 245: 112755, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37423001

RESUMEN

Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.

5.
Sci Adv ; 7(49): eabj1476, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851667

RESUMEN

The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 µg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 µg), along with monophosphoryl lipid A (dose, 0.16 µg) and QS-21 (dose, 0.16 µg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.

6.
Angew Chem Weinheim Bergstr Ger ; 133(18): 10361-10366, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-34230707

RESUMEN

The receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike (S) protein plays a central role in mediating the first step of virus infection to cause disease: virus binding to angiotensin-converting enzyme 2 (ACE2) receptors on human host cells. Therefore, S/RBD is an ideal target for blocking and neutralization therapies to prevent and treat coronavirus disease 2019 (COVID-19). Using a target-based selection approach, we developed oligonucleotide aptamers containing a conserved sequence motif that specifically targets S/RBD. Synthetic aptamers had high binding affinity for S/RBD-coated virus mimics (K D≈7 nM) and also blocked interaction of S/RBD with ACE2 receptors (IC50≈5 nM). Importantly, aptamers were able to neutralize S protein-expressing viral particles and prevent host cell infection, suggesting a promising COVID-19 therapy strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA