Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(7): 1316-1329, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38889728

RESUMEN

Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.


Asunto(s)
Apolipoproteínas E , Demencia Frontotemporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Femenino , Anciano , Polimorfismo de Nucleótido Simple , Sitios Genéticos , Persona de Mediana Edad , Estudios de Casos y Controles , Proteínas de la Mielina
2.
Brain Commun ; 6(2): fcae087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585669

RESUMEN

Genetic repeat expansions cause neuronal degeneration in amyotrophic lateral sclerosis as well as other neurodegenerative disorders such as spinocerebellar ataxia, Huntington's disease and Kennedy's disease. Repeat expansions in the same gene can cause multiple clinical phenotypes. We aimed to characterize repeat expansions in a Norwegian amyotrophic lateral sclerosis cohort. Norwegian amyotrophic lateral sclerosis patients (n = 414) and neurologically healthy controls adjusted for age and gender (n = 713) were investigated for repeat expansions in AR, ATXN1, ATXN2 and HTT using short read exome sequencing and the ExpansionHunter software. Five amyotrophic lateral sclerosis patients (1.2%) and two controls (0.3%) carried ≥36 repeats in HTT (P = 0.032), and seven amyotrophic lateral sclerosis patients (1.7%) and three controls (0.4%) carried ≥29 repeats in ATXN2 (P = 0.038). One male diagnosed with amyotrophic lateral sclerosis carried a pathogenic repeat expansion in AR, and his diagnosis was revised to Kennedy's disease. In ATXN1, 50 amyotrophic lateral sclerosis patients (12.1%) and 96 controls (13.5%) carried ≥33 repeats (P = 0.753). None of the patients with repeat expansions in ATXN2 or HTT had signs of Huntington's disease or spinocerebellar ataxia type 2, based on a re-evaluation of medical records. The diagnosis of amyotrophic lateral sclerosis was confirmed in all patients, with the exception of one patient who had primary lateral sclerosis. Our findings indicate that repeat expansions in HTT and ATXN2 are associated with increased likelihood of developing amyotrophic lateral sclerosis. Further studies are required to investigate the potential relationship between HTT repeat expansions and amyotrophic lateral sclerosis.

3.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575616

RESUMEN

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Biomarcadores/líquido cefalorraquídeo , Atrofia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA