Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 324(2): C353-C365, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534501

RESUMEN

Small leucine-rich proteoglycans (SLRPs) are major regulators of extracellular matrix assembly and cell signaling. Lumican, a member of the SLRPs family, and its derived peptides were shown to possess antitumor activity by interacting directly with the catalytic domain of MMP-14 leading to the inhibition of its activity. The aim of the present report was to characterize by in silico three-dimensional (3D) modeling the structure and the dynamics of four SLRPs including their core protein and their specific polysaccharide chains to assess their capacity to bind to MMP-14 and to regulate its activity. Molecular docking experiments were performed to identify the specific amino acids of MMP-14 interacting with each of the four SLRPs. The inhibition of each SLRP (100 nM) on MMP-14 activity was measured and the constants of inhibition (Ki) were evaluated. The impact of the number of glycan chains, structures, and dynamics of lumican on the interaction with MMP-14 was assessed by molecular dynamics simulations. Molecular docking analysis showed that all SLRPs bind to MMP-14 through their concave face, but in different regions of the catalytic domain of MMP-14. Each SLRPs inhibited significantly the MMP-14 activity. Finally, molecular dynamics showed the role of glycan chains in interaction with MMP-14 and shielding effect of SLRPs. Altogether, the results demonstrated that each SLRP exhibited inhibition of MMP-14 activity. However, the differential targeting of MMP-14 by the SLRPs was shown to be related not only to the core protein conformation but also to the glycan chain structures and dynamics.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Proteínas de la Matriz Extracelular , Biglicano , Lumican , Decorina , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Fibromodulina , Proteínas de la Matriz Extracelular/metabolismo , Metaloproteinasa 14 de la Matriz , Simulación del Acoplamiento Molecular
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901723

RESUMEN

The expression of glypicans in different hair follicle (HF) compartments is still poorly understood. Heparan sulfate proteoglycans (HSPGs) distribution in HF is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. Our previous study proposed a novel approach to assess hair histology and glypican-1 (GPC1) distribution changes in the HF at different phases of the hair growth cycle using infrared spectral imaging (IRSI). We show in the present manuscript for the first time complementary data on the distribution of glypican-4 (GPC4) and glypican-6 (GPC6) in HF at different phases of the hair growth cycle using IR imaging. Findings were supported by Western blot assays focusing on the GPC4 and GPC6 expression in HFs. Like all proteoglycan features, the glypicans are characterized by a core protein to which sulfated and/or unsulfated glycosaminoglycan (GAG) chains are covalently linked. Our study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), GAG, and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs, as supported by Western blot. Thus, in one analysis, IRSI can simultaneously reveal the location of proteins, PGs, GAGs and sulfated GAGs in HFs in a chemical and label-free manner. From a dermatological point of view, IRSI may constitute a promising technique to study alopecia.


Asunto(s)
Glipicanos , Proteoglicanos de Heparán Sulfato , Glipicanos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Cabello/metabolismo , Folículo Piloso/metabolismo
3.
Semin Cancer Biol ; 62: 125-133, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31401293

RESUMEN

A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERß, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERß in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal , Podosomas/metabolismo , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lumican/genética , Lumican/metabolismo , Terapia Molecular Dirigida , Transducción de Señal
4.
Cancer Sci ; 111(8): 2907-2922, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32573871

RESUMEN

Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2-O-sulfotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF-7 and MDA-MB-231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF-2) to HS2ST1-expressing cells compared with control cells. HS2ST1-overexpressing cells showed reduced MAPK signaling responses to FGF-2, and altered expression of epidermal growth factor receptor (EGFR), E-cadherin, Wnt-7a, and Tcf4. The increased viability of HS2ST1-depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1-dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E-cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.


Asunto(s)
Neoplasias de la Mama/patología , Sulfotransferasas/metabolismo , Antígenos CD/metabolismo , Butadienos/farmacología , Cadherinas/metabolismo , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células MCF-7 , Invasividad Neoplásica/patología , Nitrilos/farmacología , ARN Interferente Pequeño/metabolismo , Sulfotransferasas/genética
5.
Chem Rev ; 118(18): 9152-9232, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30204432

RESUMEN

The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases. In recent years, the field of PGs has expanded rapidly. Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes. PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins. The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs. The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis. Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed. Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed.


Asunto(s)
Glicosaminoglicanos/química , Glicosaminoglicanos/fisiología , Proteoglicanos/química , Proteoglicanos/fisiología , Animales , Línea Celular Tumoral , Epigénesis Genética , Matriz Extracelular/metabolismo , Glicosaminoglicanos/genética , Humanos , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Dominios Proteicos , Proteoglicanos/genética , Transducción de Señal/fisiología
6.
Molecules ; 25(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961706

RESUMEN

Glycosaminoglycans (GAGs)/proteoglycans (PGs) play a pivotal role in the metastasis of inflammatory breast cancer (IBC). They represent biomarkers and targets in diagnosis and treatment of different cancers including breast cancer. Thus, GAGs/PGs could represent potential prognostic/diagnostic biomarkers for IBC. In the present study, non-IBC MDA-MB-231, MCF7, SKBR3 cells and IBC SUM149 cells, as well as their GAG secretome were analyzed. The latter was measured in toto as dried drops with high-throughput (HT) Fourier Transform InfraRed (FTIR) spectroscopy and imaging. FTIR imaging was also employed to investigate single whole breast cancer cells while synchrotron-FTIR microspectroscopy was used to specifically target their cytoplasms. Data were analyzed by hierarchical cluster analysis and principal components analysis. Results obtained from HT-FTIR analysis of GAG drops showed that the inter-group variability enabled us to delineate between cell types in the GAG absorption range 1350-800 cm-1. Similar results were obtained for FTIR imaging of GAG extracts and fixed single whole cells. Synchrotron-FTIR data from cytoplasms allowed discrimination between non-IBC and IBC. Thus, by using GAG specific region, not only different breast cancer cell lines could be differentiated, but also non-IBC from IBC cells. This could be a potential diagnostic spectral marker for IBC detection useful for patient management.


Asunto(s)
Glicosaminoglicanos/metabolismo , Procesamiento de Imagen Asistido por Computador , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Análisis por Conglomerados , Medios de Cultivo Condicionados/química , Femenino , Humanos , Análisis de Componente Principal
7.
Analyst ; 143(24): 6103-6112, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30468236

RESUMEN

Inflammatory breast cancer (IBC) has a poor prognosis because of the lack of specific biomarkers and its late diagnosis. An accurate and rapid diagnosis implemented early enough can significantly improve the disease outcome. Vibrational spectroscopy has proven to be useful for cell and tissue characterization based on the intrinsic molecular information. Here, we have applied infrared and Raman microspectroscopy and imaging to differentiate between non-IBC and IBC at both cell and tissue levels. Two human breast cancer cell lines (MDA-MB-231 and SUM-149), 20 breast cancer patients (10 non-IBC and 10 IBC), and 4 healthy volunteer biopsies were investigated. Fixed cells and tissues were analyzed by FTIR microspectroscopy and imaging, while live cells were studied by Raman microspectroscopy. Spectra were analyzed by hierarchical cluster analysis (HCA) and images by common k-means clustering algorithms. For both cell suspensions and single cells, FTIR spectroscopy showed sufficient high inter-group variability to delineate MDA-MB-231 and SUM-149 cell lines. Most significant differences were observed in the spectral regions of 1096-1108 and 1672-1692 cm-1. Analysis of live cells by Raman microspectroscopy gave also a good discrimination of these cell types. The most discriminant regions were 688-992, 1019-1114, 1217-1375 and 1516-1625 cm-1. Finally, k-means cluster analysis of FTIR images allowed delineating non-IBC from IBC tissues. This study demonstrates the potential of vibrational spectroscopy and imaging to discriminate between non-IBC and IBC at both cell and tissue levels.


Asunto(s)
Neoplasias Inflamatorias de la Mama/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Adulto , Anciano , Algoritmos , Línea Celular Tumoral , Análisis por Conglomerados , Femenino , Humanos , Neoplasias Inflamatorias de la Mama/química , Persona de Mediana Edad , Análisis de la Célula Individual/métodos , Vibración
8.
Glycoconj J ; 34(3): 309-323, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27928742

RESUMEN

Glycosaminoglycans (GAGs) are natural, linear and negatively charged heteropolysaccharides which are incident in every mammalian tissue. They consist of repeating disaccharide units, which are composed of either sulfated or non-sulfated monosaccharides. Depending on tissue types, GAGs exhibit structural heterogeneity such as the position and degree of sulfation or within their disaccharide units composition being heparin, heparan sulfate, chondroitine sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. They are covalently linked to a core protein (proteoglycans) or as free chains (hyaluronan). GAGs affect cell properties and functions either by direct interaction with cell receptors or by sequestration of growth factors. These evidences of divert biological roles of GAGs make their characterization at cell and tissue levels of importance. Thus, non-invasive techniques are interesting to investigate, to qualitatively and quantitatively characterize GAGs in vitro in order to use them as diagnostic biomarkers and/or as therapeutic targets in several human diseases including cancer. Infrared and Raman microspectroscopies and imaging are sensitive enough to differentiate and classify GAG types and subtypes in spite of their close molecular structures. Spectroscopic markers characteristic of reference GAG molecules were identified. Beyond these investigations of the standard GAG spectral signature, infrared and Raman spectral signatures of GAG were searched in complex biological systems like cells. The aim of the present review is to describe the implementation of these complementary vibrational spectroscopy techniques, and to discuss their potentials, advantages and disadvantages for GAG analysis. In addition, this review presents new data as we show for the first time GAG infrared and Raman spectral signatures from conditioned media and live cells, respectively.


Asunto(s)
Dermatán Sulfato/química , Heparitina Sulfato/química , Ácido Hialurónico/química , Sulfato de Queratano/química , Proteoglicanos/química , Espectrometría Raman/métodos , Animales , Células CHO , Cricetulus , Medios de Cultivo Condicionados/química , Dermatán Sulfato/aislamiento & purificación , Dermatán Sulfato/metabolismo , Disacáridos/química , Heparitina Sulfato/aislamiento & purificación , Heparitina Sulfato/metabolismo , Humanos , Ácido Hialurónico/aislamiento & purificación , Ácido Hialurónico/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sulfato de Queratano/aislamiento & purificación , Sulfato de Queratano/metabolismo , Unión Proteica , Proteoglicanos/aislamiento & purificación , Proteoglicanos/metabolismo , Receptores de Superficie Celular/metabolismo , Espectrometría Raman/instrumentación , Sulfatos/química
9.
Anal Bioanal Chem ; 406(24): 5795-803, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25023968

RESUMEN

We recently identified vibrational spectroscopic markers characteristic of standard glycosaminoglycan (GAG) molecules. The aims of the present work were to further this investigation to more complex biological systems and to characterize, via their spectral profiles, cell types with different capacities for GAG synthesis. After recording spectral information from individual GAG standards (hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate) and GAG-GAG mixtures, GAG-defective mutant Chinese hamster ovary (CHO)-745 cells, wild-type CHO cells, and chondrocytes were analyzed as suspensions by high-throughput infrared spectroscopy and as single isolated cells by infrared imaging. Spectral data were processed and interpreted by exploratory unsupervised chemometric methods based on hierarchical cluster analysis and principal component analysis. Our results showed that the spectral information obtained was discriminant enough to clearly delineate between the different cell types both at the cell suspension and single-cell levels. The abilities of the technique are to perform spectral profiling and to identify single cells with different potentials to synthesize GAGs. Infrared microspectroscopy/imaging could therefore be developed for cell screening purposes and further for identifying GAG molecules in normal tissues during physiological conditions (aging, healing process) and numerous pathological states (arthritis, cancer).


Asunto(s)
Condrocitos/química , Condrocitos/metabolismo , Glicosaminoglicanos/metabolismo , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Glicosaminoglicanos/análisis , Humanos , Espectrofotometría Infrarroja/métodos
10.
J Struct Biol ; 183(3): 394-403, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23747391

RESUMEN

Lumican and decorin, two members of the small leucine-rich repeat proteoglycan (SLRP) family, have been implicated as regulators of collagen I fibril structure in different tissues. Both proteoglycans consist of a core protein and a glycosaminoglycan (GAG) chain, but quantitative information regarding the precise role of the protein and GAG moieties in regulating collagen structure is still limited. In this study, we used AFM imaging and a model system of aligned collagen I nanofibrils to investigate the role of lumican and decorin on collagen I fibril structure with high resolution. When co-assembled with collagen I, recombinant lumican or decorin proteins lacking the GAG chains decreased collagen fibril width to values below <100nm and increased interfibrillar spacing in a dose-dependent manner. At lower concentrations, lumican appeared to have a stabilizing effect on newly-formed collagen fibrils, while at higher concentrations both lumican and decorin inhibited collagen fibrillogenesis. GAG-containing decorin also increased interfibrillar spacing, decreased fibril width and ultimately inhibited fibrillogenesis, but these effects required lower concentrations compared to recombinant decorin, indicating that the decorin core protein alone cannot compensate for the full regulatory and structural contribution of the GAG chain during collagen I fibrillogenesis. Using a 2D autocorrelation approach, we furthermore analyzed and compared the effects of recombinant and glycosylated decorin on collagen ultrastructure, providing a quantitative measure for the observed structural differences. AFM analysis of ordered fibrillar collagen arrays in combination with quantitative autocorrelation image analysis thus provides a useful tool for investigating SLRP-dependent nanoscale effects on collagen fibril structure.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/química , Colágeno Tipo I/ultraestructura , Decorina/química , Sulfato de Queratano/química , Colágeno Tipo I/química , Glicosaminoglicanos/química , Células HEK293 , Humanos , Lumican , Microscopía de Fuerza Atómica , Multimerización de Proteína , Estabilidad Proteica
11.
J Vis Exp ; (191)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688565

RESUMEN

The classical analyses of indirect communication between different cell types necessitate the use of conditioned media. Moreover, the production of conditioned media remains time-consuming and far from physiological and pathological conditions. Although a few models of co-culture are commercially available, they remain restricted to specific assays and are mostly for two types of cells. Here, 3D-printed inserts are used that are compatible with numerous functional assays. The insert allows the separation of one well of a 6-well plate into four compartments. A wide range of combinations can be set. Moreover, windows are designed in each wall of the compartments so that potential intercellular communication between every compartment is possible in the culture medium in a volume-dependent manner. For example, paracrine intercellular communication can be studied between four cell types in monolayer, in 3D (spheroids), or by combining both. In addition, a mix of different cell types can be seeded in the same compartment in 2D or 3D (organoids) format. The absence of a bottom in the 3D-printed inserts allows the usual culture conditions on the plate, possible coating on the plate containing the insert, and direct visualization by optical microscopy. The multiple compartments provide the possibility to collect different cell types independently or to use, in each compartment, different reagents for RNA or protein extraction. In this study, a detailed methodology is provided to use the new 3D-printed insert as a co-culture system. To demonstrate several capacities of this flexible and simple model, previously published functional assays of cell communication were performed in the new 3D-printed inserts and were demonstrated to be reproducible. The 3D-printed inserts and the conventional cell culture using conditioned media led to similar results. In conclusion, the 3D-printed insert is a simple device that can be adapted to numerous models of co-cultures with adherent cell types.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Técnicas de Cultivo de Célula , Medios de Cultivo Condicionados , Técnicas de Cultivo de Célula/métodos , Técnicas de Cocultivo , Impresión Tridimensional
12.
J Intensive Care ; 11(1): 44, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817235

RESUMEN

BACKGROUND: While not traditionally included in the conceptual understanding of circulation, the interstitium plays a critical role in maintaining fluid homeostasis. Fluid balance regulation is a critical aspect of septic shock, with a well-known association between fluid balance and outcome. The regulation of transcapillary flow is the first key to understand fluid homeostasis during sepsis. MAIN TEXT: Capillary permeability is increased during sepsis, and was classically considered to be necessary and sufficient to explain the increase of capillary filtration during inflammation. However, on the other side of the endothelial wall, the interstitium may play an even greater role to drive capillary leak. Indeed, the interstitial extracellular matrix forms a complex gel-like structure embedded in a collagen skeleton, and has the ability to directly attract intravascular fluid by decreasing its hydrostatic pressure. Thus, interstitium is not a mere passive reservoir, as was long thought, but is probably major determinant of fluid balance regulation during sepsis. Up to this date though, the role of the interstitium during sepsis and septic shock has been largely overlooked. A comprehensive vision of the interstitium may enlight our understanding of septic shock pathophysiology. Overall, we have identified five potential intersections between septic shock pathophysiology and the interstitium: 1. increase of oedema formation, interacting with organ function and metabolites diffusion; 2. interstitial pressure regulation, increasing transcapillary flow; 3. alteration of the extracellular matrix; 4. interstitial secretion of inflammatory mediators; 5. decrease of lymphatic outflow. CONCLUSIONS: We aimed at reviewing the literature and summarizing the current knowledge along these specific axes, as well as methodological aspects related to interstitium exploration.

13.
NPJ Regen Med ; 7(1): 77, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577752

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.

14.
Exp Cell Res ; 316(17): 2922-31, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20705068

RESUMEN

Lumican, an extracellular matrix protein of the small leucine-rich proteoglycan family, has been shown to impede melanoma progression by inhibiting cell migration. In the present study, we show that lumican targets α2ß1 integrin thereby inhibiting cell migration. A375 melanoma cells were transfected with siRNA directed against the α2 integrin subunit. Compared to A375 control cells, the anti-migratory effect of lumican was abrogated on transfected A375 cells. Moreover, lumican inhibited the chemotactic migration of Chinese hamster ovary (CHO) cells stably transfected with α2 integrin subunit (CHO-A2) but not that of wild-type CHO cells (CHO-WT) lacking this subunit. In contrast to CHO-WT cells, we observed in time-lapse microscopy a decrease of CHO-A2 cell migration speed in presence of lumican. Focal adhesion kinase phosphorylated at tyrosine-397 (pFAK) and total FAK were analysed in CHO-WT and CHO-A2 cells. A significant decrease of the ratio pFAK/FAK was shown in presence of recombinant human lumican. Using solid phase assays, a direct binding between lumican and the α2ß1 integrin was demonstrated. This interaction did not involve the glycan moiety of lumican and was cation independent. Lumican was also able to bind the activated I domain of the α2 integrin subunit with a K(d)≥200nM. In conclusion, we demonstrated for the first time that the inhibition of cell migration by lumican depends on a direct binding between the core protein of lumican and the α2ß1 integrin.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Integrina alfa2beta1/metabolismo , Sulfato de Queratano/farmacología , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina alfa2/metabolismo , Lumican , Melanoma , Fosforilación , Unión Proteica
15.
Cells ; 10(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917849

RESUMEN

It was reported that lumican inhibits the activity of metalloproteinase MMP-14 and melanoma cell migration in vitro and in vivo. Moreover, Snail triggers epithelial-to-mesenchymal transition and the metastatic potential of cancer cells. Therefore, the aim of this study was to examine the effect of lumican on Mock and Snail overexpressing melanoma B16F1 cells in vivo. Lung metastasis was analyzed after intravenous injections of Mock-B16F1 and Snail-B16F1 cells in Lum+/+ and Lum-/- mice. At day 14, mice were sacrificed, and lungs were collected. The number of lung metastatic nodules was significantly higher in mice injected with Snail-B16F1 cells as compared to mice injected with Mock-B16F1 cells confirming the pro-metastatic effect of Snail. This effect was stronger in Lum-/- mice as compared to Lum+/+, suggesting that endogenous lumican of wild-type mice significantly inhibits metastasis to lungs. Scanning electron and confocal microscopy investigations demonstrated that lumican inhibits the development of elongated cancer cell phenotypes which are known to develop invadopodia releasing MMPs. Moreover, lumican was shown to affect the expression of cyclin D1, cortactin, vinculin, hyaluronan synthase 2, heparanase, MMP-14 and the phosphorylation of FAK, AKT, p130 Cas and GSK3α/ß. Altogether, these data demonstrated that lumican significantly inhibits lung metastasis in vivo, as well as cell invasion in vitro, suggesting that a lumican-based strategy targeting Snail-induced metastasis could be useful for melanoma treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Lumican/metabolismo , Melanoma/patología , Podosomas/patología , Neoplasias Cutáneas/patología , Animales , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Forma de la Célula , Cortactina/metabolismo , Ciclina D1/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Neoplasias Pulmonares/secundario , Melanoma/metabolismo , Melanoma/ultraestructura , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Fosforilación , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/ultraestructura , Factores de Transcripción de la Familia Snail/metabolismo , Vinculina/metabolismo
16.
Biomolecules ; 11(2)2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573119

RESUMEN

The expression of glypicans in different hair follicle (HF) compartments and their potential roles during hair shaft growth are still poorly understood. Heparan sulfate proteoglycan (HSPG) distribution in HFs is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. In this report, a novel approach is proposed to assess hair histology and HSPG distribution changes in HFs at different phases of the hair growth cycle using infrared spectral imaging (IRSI). The distribution of HSPGs in HFs was probed by IRSI using the absorption region relevant to sulfation as a spectral marker. The findings were supported by Western immunoblotting and immunohistochemistry assays focusing on the glypican-1 expression and distribution in HFs. This study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), glycosaminoglycan (GAG), and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs as supported by Western immunoblotting. Thus, IRSI can simultaneously reveal the location of proteins, PGs, GAGs, and sulfated GAGs in HFs in a reagent- and label-free manner. From a dermatological point of view, IRSI shows its potential as a promising technique to study alopecia.


Asunto(s)
Glicosaminoglicanos/metabolismo , Glipicanos/metabolismo , Cabello/crecimiento & desarrollo , Proteoglicanos de Heparán Sulfato/metabolismo , Algoritmos , Alopecia/diagnóstico , Alopecia/prevención & control , Biopsia , Western Blotting , Análisis por Conglomerados , Dermatología , Proteínas de la Matriz Extracelular , Cabello/metabolismo , Folículo Piloso/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Análisis de Componente Principal , Espectrofotometría Infrarroja/métodos
17.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638415

RESUMEN

Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), displays anti-tumor properties through its direct interaction with MMP-14. Lumican-derived peptides, such as lumcorin (17 amino acids) or L9M (10 amino acids), are able to inhibit the proteolytic activity of MMP-14 and melanoma progression. This work aimed to visualize the interactions of lumican-derived peptides and MMP-14. Molecular modeling was used to characterize the interactions between lumican-derived peptides, such as lumcorin, L9M, and cyclic L9M (L9Mc, 12 amino acids), and MMP-14. The interaction of L9Mc with MMP-14 was preferential with the MT-Loop domain while lumcorin interacted more with the catalytic site. Key residues in the MMP-14 amino acid sequence were highlighted for the interaction between the inhibitory SLRP-derived peptides and MMP-14. In order to validate the in silico data, MMP-14 activity and migration assays were performed using murine B16F1 and human HT-144 melanoma cells. In contrast to the HT-144 melanoma cell line, L9Mc significantly inhibited the migration of B16F1 cells and the activity of MMP-14 but with less efficacy than lumican and lumcorin. L9Mc significantly inhibited the proliferation of B16F1 but not of HT-144 cells in vitro and primary melanoma tumor growth in vivo. Thus, the site of interaction between the domains of MMP-14 and lumcorin or L9Mc were different, which might explain the differences in the inhibitory effect of MMP-14 activity. Altogether, the biological assays validated the prediction of the in silico study. Possible and feasible improvements include molecular dynamics results.

18.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885059

RESUMEN

Ovarian cancer remains one of the most fatal cancers due to a lack of robust screening methods of detection at early stages. Extracellular matrix (ECM) mediates interactions between cancer cells and their microenvironment via specific molecules. Lumican, a small leucine-rich proteoglycan (SLRP), maintains ECM integrity and inhibits both melanoma primary tumor development, as well as metastatic spread. The aim of this study was to analyze the effect of lumican on tumor growth of murine ovarian epithelial cancer. C57BL/6 wild type mice (n = 12) and lumican-deficient mice (n = 10) were subcutaneously injected with murine ovarian epithelial carcinoma ID8 cells, and then sacrificed after 18 days. Analysis of tumor volumes demonstrated an inhibitory effect of endogenous lumican on ovarian tumor growth. The ovarian primary tumors were subjected to histological and immunohistochemical staining using anti-lumican, anti-αv integrin, anti-CD31 and anti-cyclin D1 antibodies, and then further examined by label-free infrared spectral imaging (IRSI), second harmonic generation (SHG) and Picrosirius red staining. The IR tissue images allowed for the identification of different ECM tissue regions of the skin and the ovarian tumor. Moreover, IRSI showed a good correlation with αv integrin immunostaining and collagen organization within the tumor. Our results demonstrate that lumican inhibits ovarian cancer growth mainly by altering collagen fibrilogenesis.

19.
Front Cell Dev Biol ; 9: 781172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957110

RESUMEN

The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.

20.
J Exp Med ; 198(7): 977-85, 2003 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-14530373

RESUMEN

Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein-coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42-p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Quimiocinas/fisiología , Receptores de Quimiocina/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Movimiento Celular , Quimiocinas/química , Quimiocinas/genética , Quimiocinas/aislamiento & purificación , Células Dendríticas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA