Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 313(5): H959-H973, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754719

RESUMEN

Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo.NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular junctions, or transcellularly. Cells aligned to minimize the shear stress acting across their long axis. Paracellular transport correlated with the level of this minimized shear, but transcellular transport was reduced uniformly by flow regardless of the shear profile.


Asunto(s)
Endotelio Vascular/metabolismo , Sustancias Macromoleculares/metabolismo , Algoritmos , Animales , Aorta/citología , Aorta/metabolismo , Transporte Biológico Activo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/ultraestructura , Uniones Intercelulares/metabolismo , Lipoproteínas LDL/metabolismo , Estrés Mecánico , Porcinos
2.
Proc Natl Acad Sci U S A ; 111(38): 13876-81, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201985

RESUMEN

Increased flow resistance is responsible for the elevated intraocular pressure characteristic of glaucoma, but the cause of this resistance increase is not known. We tested the hypothesis that altered biomechanical behavior of Schlemm's canal (SC) cells contributes to this dysfunction. We used atomic force microscopy, optical magnetic twisting cytometry, and a unique cell perfusion apparatus to examine cultured endothelial cells isolated from the inner wall of SC of healthy and glaucomatous human eyes. Here we establish the existence of a reduced tendency for pore formation in the glaucomatous SC cell--likely accounting for increased outflow resistance--that positively correlates with elevated subcortical cell stiffness, along with an enhanced sensitivity to the mechanical microenvironment including altered expression of several key genes, particularly connective tissue growth factor. Rather than being seen as a simple mechanical barrier to filtration, the endothelium of SC is seen instead as a dynamic material whose response to mechanical strain leads to pore formation and thereby modulates the resistance to aqueous humor outflow. In the glaucomatous eye, this process becomes impaired. Together, these observations support the idea of SC cell stiffness--and its biomechanical effects on pore formation--as a therapeutic target in glaucoma.


Asunto(s)
Citoesqueleto , Células Endoteliales , Ojo , Glaucoma , Microscopía de Fuerza Atómica , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ojo/metabolismo , Ojo/patología , Glaucoma/metabolismo , Glaucoma/patología , Humanos
3.
Exp Eye Res ; 146: 17-21, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26689753

RESUMEN

The majority of trabecular outflow likely crosses Schlemm's canal (SC) endothelium through micron-sized pores, and SC endothelium provides the only continuous cell layer between the anterior chamber and episcleral venous blood. SC endothelium must therefore be sufficiently porous to facilitate outflow, while also being sufficiently restrictive to preserve the blood-aqueous barrier and prevent blood and serum proteins from entering the eye. To understand how SC endothelium satisfies these apparently incompatible functions, we examined how the diameter and density of SC pores affects retrograde diffusion of serum proteins across SC endothelium, i.e. from SC lumen into the juxtacanalicular tissue (JCT). Opposing retrograde diffusion is anterograde bulk flow velocity of aqueous humor passing through pores, estimated to be approximately 5 mm/s. As a result of this relatively large through-pore velocity, a mass transport model predicts that upstream (JCT) concentrations of larger solutes such as albumin are less than 1% of the concentration in SC lumen. However, smaller solutes such as glucose are predicted to have nearly the same concentration in the JCT and SC. In the hypothetical case that, rather than micron-sized pores, SC formed 65 nm fenestrae, as commonly observed in other filtration-active endothelia, the predicted concentration of albumin in the JCT would increase to approximately 50% of that in SC. These results suggest that the size and density of SC pores may have developed to allow SC endothelium to maintain the blood-aqueous barrier while simultaneously facilitating aqueous humor outflow.


Asunto(s)
Humor Acuoso/metabolismo , Barrera Hematoacuosa/fisiología , Endotelio/metabolismo , Glaucoma/metabolismo , Animales , Transporte Biológico/fisiología , Endotelio/ultraestructura , Glaucoma/diagnóstico , Glaucoma/fisiopatología , Humanos , Microscopía Electrónica de Rastreo , Esclerótica/metabolismo , Malla Trabecular/metabolismo
4.
Exp Eye Res ; 130: 87-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450060

RESUMEN

All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm's canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular "I" and paracellular "B" pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 µm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD(2) and nD(3)) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10(-4)) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma.


Asunto(s)
Humor Acuoso/fisiología , Endotelio/ultraestructura , Espacio Intracelular , Limbo de la Córnea/ultraestructura , Malla Trabecular/ultraestructura , Anciano , Anciano de 80 o más Años , Endotelio/metabolismo , Femenino , Colorantes Fluorescentes , Humanos , Hidrodinámica , Limbo de la Córnea/metabolismo , Masculino , Microscopía Electrónica de Rastreo , Nanopartículas , Perfusión , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Donantes de Tejidos , Malla Trabecular/metabolismo , Vimentina/metabolismo
5.
Exp Eye Res ; 127: 224-35, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25128579

RESUMEN

The bulk of aqueous humor passing through the conventional outflow pathway must cross the inner wall endothelium of Schlemm's canal (SC), likely through micron-sized transendothelial pores. SC pore density is reduced in glaucoma, possibly contributing to obstructed aqueous humor outflow and elevated intraocular pressure (IOP). Little is known about the mechanisms of pore formation; however, pores are often observed near dome-like cellular outpouchings known as giant vacuoles (GVs) where significant biomechanical strain acts on SC cells. We hypothesize that biomechanical strain triggers pore formation in SC cells. To test this hypothesis, primary human SC cells were isolated from three non-glaucomatous donors (aged 34, 44 and 68), and seeded on collagen-coated elastic membranes held within a membrane stretching device. Membranes were then exposed to 0%, 10% or 20% equibiaxial strain, and the cells were aldehyde-fixed 5 min after the onset of strain. Each membrane contained 3-4 separate monolayers of SC cells as replicates (N = 34 total monolayers), and pores were assessed by scanning electron microscopy in 12 randomly selected regions (∼65,000 µm(2) per monolayer). Pores were identified and counted by four independent masked observers. Pore density increased with strain in all three cell lines (p < 0.010), increasing from 87 ± 36 pores/mm(2) at 0% strain to 342 ± 71 at 10% strain; two of the three cell lines showed no additional increase in pore density beyond 10% strain. Transcellular "I-pores" and paracellular "B-pores" both increased with strain (p < 0.038), however B-pores represented the majority (76%) of pores. Pore diameter, in contrast, appeared unaffected by strain (p = 0.25), having a mean diameter of 0.40 µm for I-pores (N = 79 pores) and 0.67 µm for B-pores (N = 350 pores). Pore formation appears to be a mechanosensitive process that is triggered by biomechanical strain, suggesting that SC cells have the ability to modulate local pore density and filtration characteristics of the inner wall endothelium based on local biomechanical cues. The molecular mechanisms of pore formation and how they become altered in glaucoma may be studied in vitro using stretched SC cells.


Asunto(s)
Humor Acuoso/metabolismo , Células Endoteliales/fisiología , Espacio Extracelular , Espacio Intracelular , Limbo de la Córnea/citología , Esclerótica/fisiología , Estrés Mecánico , Adulto , Anciano , Comunicación Celular , Recuento de Células , Células Cultivadas , Células Endoteliales/ultraestructura , Humanos , Microscopía Electrónica de Rastreo , Porosidad , Esclerótica/ultraestructura , Donantes de Tejidos , Vacuolas
6.
CPT Pharmacometrics Syst Pharmacol ; 11(3): 264-289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921743

RESUMEN

As decisions in drug development increasingly rely on predictions from mechanistic systems models, assessing the predictive capability of such models is becoming more important. Several frameworks for the development of quantitative systems pharmacology (QSP) models have been proposed. In this paper, we add to this body of work with a framework that focuses on the appropriate use of qualitative and quantitative model evaluation methods. We provide details and references for those wishing to apply these methods, which include sensitivity and identifiability analyses, as well as concepts such as validation and uncertainty quantification. Many of these methods have been used successfully in other fields, but are not as common in QSP modeling. We illustrate how to apply these methods to evaluate QSP models, and propose methods to use in two case studies. We also share examples of misleading results when inappropriate analyses are used.


Asunto(s)
Desarrollo de Medicamentos , Modelos Biológicos , Desarrollo de Medicamentos/métodos , Humanos , Farmacología en Red
7.
Sci Rep ; 6: 37217, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845411

RESUMEN

Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p < 0.0001) and the surrounding cytoplasm (p < 0.0001). Moreover, we demonstrate the mechanical response of cells to Latrunculin-A, a drug that reduces cell stiffness by preventing cytoskeletal assembly. Our technique can therefore generate valuable insights into cellular biomechanics and its role in pathophysiology.


Asunto(s)
Núcleo Celular/ultraestructura , Citoplasma/ultraestructura , Microscopía Confocal/métodos , Membrana Nuclear/ultraestructura , Fenómenos Biomecánicos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Módulo de Elasticidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Imagenología Tridimensional/métodos , Análisis de la Célula Individual , Tiazolidinas/farmacología
8.
Prog Retin Eye Res ; 44: 86-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25223880

RESUMEN

Ocular hypertension in glaucoma develops due to age-related cellular dysfunction in the conventional outflow tract, resulting in increased resistance to aqueous humor outflow. Two cell types, trabecular meshwork (TM) and Schlemm's canal (SC) endothelia, interact in the juxtacanalicular tissue (JCT) region of the conventional outflow tract to regulate outflow resistance. Unlike endothelial cells lining the systemic vasculature, endothelial cells lining the inner wall of SC support a transcellular pressure gradient in the basal to apical direction, thus acting to push the cells off their basal lamina. The resulting biomechanical strain in SC cells is quite large and is likely to be an important determinant of endothelial barrier function, outflow resistance and intraocular pressure. This review summarizes recent work demonstrating how biomechanical properties of SC cells impact glaucoma. SC cells are highly contractile, and such contraction greatly increases cell stiffness. Elevated cell stiffness in glaucoma may reduce the strain experienced by SC cells, decrease the propensity of SC cells to form pores, and thus impair the egress of aqueous humor from the eye. Furthermore, SC cells are sensitive to the stiffness of their local mechanical microenvironment, altering their own cell stiffness and modulating gene expression in response. Significantly, glaucomatous SC cells appear to be hyper-responsive to substrate stiffness. Thus, evidence suggests that targeting the material properties of SC cells will have therapeutic benefits for lowering intraocular pressure in glaucoma.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Células Endoteliales/fisiología , Glaucoma/fisiopatología , Presión Intraocular/fisiología , Malla Trabecular/fisiología , Humor Acuoso/metabolismo , Humanos , Espacio Intracelular/fisiología , Perfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA