RESUMEN
ConspectusIn the ever-increasing renewable-energy demand scenario, developing new photovoltaic technologies is important, even in the presence of established terawatt-scale silicon technology. Emerging photovoltaic technologies play a crucial role in diversifying material flows while expanding the photovoltaic product portfolio, thus enhancing security and competitiveness within the solar industry. They also serve as a valuable backup for silicon photovoltaic, providing resilience to the overall energy infrastructure. However, the development of functional solar materials poses intricate multiobjective optimization challenges in a large multidimensional composition and parameter space, in some cases with millions of potential candidates to be explored. Solving it necessitates reproducible, user-independent laboratory work and intelligent preselection of innovative experimental methods.Materials acceleration platforms (MAPs) seamlessly integrate robotic materials synthesis and characterization with AI-driven data analysis and experimental design, positioning them as enabling technologies for the discovery and exploration of new materials. They are proposed to revolutionize materials development away from the Edisonian trial-and-error approaches to ultrashort cycles of experiments with exceptional precision, generating a reliable and highly qualitative data situation that allows training machine learning algorithms with predictive power. MAPs are designed to assist the researcher in multidimensional aspects of materials discovery, such as material synthesis, precursor preparation, sample processing and characterization, and data analysis, and are drawing escalating attention in the field of energy materials. Device acceleration platforms (DAPs), however, are designed to optimize functional films and layer stacks. Unlike MAPs, which focus on material discovery, a central aspect of DAPs is the identification and refinement of ideal processing conditions for a predetermined set of materials. Such platforms prove especially invaluable when dealing with "disordered semiconductors," which depend heavily on the processing parameters that ultimately define the functional properties and functionality of thin film layers. By facilitating the fine-tuning of processing conditions, DAPs contribute significantly to the advancement and optimization of disordered semiconductor devices, such as emerging photovoltaics.In this Account, we review the recent advancements made by our group in automated and autonomous laboratories for advanced material discovery and device optimization with a strong focus on emerging photovoltaics, such as solution-processing perovskite solar cells and organic photovoltaics. We first introduce two MAPs and two DAPs developed in-house: a microwave-assisted high-throughput synthesis platform for the discovery of organic interface materials, a multipurpose robot-based pipetting platform for the synthesis of new semiconductors and the characterization of thin film semiconductor composites, the SPINBOT system, which is a spin-coating DAP with the potential to optimize complex device architectures, and finally, AMANDA, a fully integrated and autonomously operating DAP. Notably, we underscore the utilization of a robot-based high-throughput experimentation technique to address the common optimization challenges encountered in extensive multidimensional composition and parameter spaces pertaining to organic and perovskite photovoltaics materials. Finally, we briefly propose a holistic concept and technology, a self-driven autonomous material and device acceleration platform (AMADAP) laboratory, for autonomous functional solar materials discovery and development. We hope to discover how AMADAP can be further strengthened and universalized with advancing development of hardware and software infrastructures in the future.
RESUMEN
The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.
RESUMEN
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2â³,3â³:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (â¼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
RESUMEN
Despite the great success of perovskite photovoltaics in terms of device efficiency and stability using laboratory-scale spin-coating methods, the demand for high-throughput and cost-effective solutions remains unresolved and rarely reported because of the complicated nature of perovskite crystallization. In this work, we propose a stable precursor ink design strategy to control the solvent volatilization and perovskite crystallization to enable the wide speed window printing (0.3 to 18.0â m/min) of phase-pure FAPbI3 perovskite solar cells (pero-SCs) in ambient atmosphere. The FAPbI3 perovskite precursor ink uses volatile acetonitrile (ACN) as the main solvent with DMF and DMSO as coordination additives is beneficial to improve the ink stability, inhibit the coffee rings, and the complicated intermediate FAPbI3 phases, delivering high-quality pin-hole free and phase-pure FAPbI3 perovskite films with large-scale uniformity. Ultimately, small-area FAPbI3 pero-SCs (0.062â cm2 ) and large-area modules (15.64â cm2 ) achieved remarkable efficiencies of 24.32 % and 21.90 %, respectively, whereas the PCE of the devices can be maintained at 23.76 % when the printing speed increases to 18.0â m/min. Specifically, the unencapsulated device exhibits superior operational stability with T90 >1350â h. This work represents a step towards the scalable, cost-effective manufacturing of perovskite photovoltaics with both high performance and high throughput.
RESUMEN
High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of the molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle "Like dissolves like," we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electronic properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production.
RESUMEN
Increasing the relative dielectric constant is a constant pursuit of organic semiconductors, but it often leads to multiple changes in device characteristics, hindering the establishment of a reliable relationship between dielectric constant and photovoltaic performance. Herein, a new non-fullerene acceptor named BTP-OE is reported by replacing the branched alkyl chains on Y6-BO with branched oligoethylene oxide chains. This replacement successfully increases the relative dielectric constant from 3.28 to 4.62. To surprise, BTP-OE offers consistently lower device performance relative to Y6-BO in organic solar cells (16.27% vs 17.44%) due to the losses in open-circuit voltage and fill factor. Further investigations unravel that BTP-OE has resulted in reduced electron mobility, increased trap density, enhanced first order recombination, and enlarged energetic disorder. These results demonstrate the complex relationship between dielectric constant and device performance, which provide valuable implications for the development of organic semiconductors with high dielectric constant for photovoltaic application.
RESUMEN
The density of states (DOS) is fundamentally important for understanding physical processes in organic disordered semiconductors, yet hard to determine experimentally. We evaluated the DOS by considering recombination via tail states and using the temperature and open-circuit voltage (V_{oc}) dependence of the ideality factor. By performing Suns-V_{oc} measurements, we find that the energetic disorder increases deeper into the band gap, which is not expected for a Gaussian or exponential DOS. The linear dependence of the disorder on energy reveals the power-law DOS in organic solar cells.
Asunto(s)
Distribución Normal , TemperaturaRESUMEN
Tailored modifications of halide lead-free perovskites (LFPs) via doping/alloying with metal cations have been recognized as a promising pathway to highly efficient inorganic phosphors with photoluminescence (PL) quantum yields of up to 100 %. Such materials typically display selective sensitivity to UV light, a broad PL range, and long PL lifetimes as well as a unique compositional variability and stability-an ideal combination for many light-harvesting applications. This Minireview presents the state-of-the-art in doped LFPs, focusing on the reports published mostly in the last two to three years. We discuss the factors determining the efficiency and spectral parameters of the broadband PL of doped LFPs depending on the dopant and host matrix, both in micro- and nanocrystalline states, address the most relevant challenges this rapidly developing research area is facing, and outline the most promising concepts for further progress in this field.
RESUMEN
Although ternary organic solar cells (OSCs) have unique advantages in improving device performance, the morphology assembly in the ternary-phase would be more uncertain or complex than that in the binary-phase. Here, we propose a new concept of oligomer-assisted photoactive layers for high-performance OSCs. The formed alloy-like phase of the oligomer : host polymer blend enabled the oligomer-assisted OSCs to fuse the advantages of both binary and ternary devices, exhibiting substantially enhanced performance and stability compared to the control devices. With the addition of oligomers, outstanding efficiencies of 17.33 % for a PM6 : Y6 device, 18.32 % for a PM6 : BTP-eC9 device, and 17.13 % for a PM6/Y6 pseudo-bilayer device were achieved, all of which are one of the highest values in their corresponding fields. The improved performance originated from the downshift energy levels, enhanced light absorption, optimized blend morphology, favorable charge dynamics, and reduced non-radiative energy loss.
RESUMEN
Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850â nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.
RESUMEN
Despite the intense research on photovoltaic lead halide perovskites, reported optical properties as basic as the absorption onset and the optical band gap vary significantly. To unambiguously answer the question whether the discrepancies are a result of differences between bulk and "near-surface" material, we perform two nonlinear spectroscopies with drastically different information depths on single crystals of the prototypical (CH3NH3)PbI3 methylammonium lead iodide. Two-photon absorption, detected via the resulting generation of carriers and photocurrents (2PI-PC), probes the interband transitions with an information depth in the millimeter range relevant for bulk (single-crystal) material. In contrast, the transient magneto-optical Kerr effect (trMOKE) measured in a reflection geometry determines the excitonic transition energies in the region near (hundreds of nm) the surface which also determine the optical properties in typical thin films. To identify differences between structural phases, we sweep the sample temperature across the orthorhombic-tetragonal phase transition temperature. In the application-relevant room-temperature tetragonal phase (at 170 K), we find a bulk band gap of 1.55 ± 0.01 eV, whereas in the near-surface region excitonic transitions occur at 1.59 ± 0.01 eV. The latter value is consistent with previous reflectance measurements by other groups and considerably higher than the bulk band gap. The small band gap of the bulk material explains the extended infrared absorption of crystalline perovskite solar cells, the low-energy bands which carry optically driven spin-polarized currents, and the narrow bandwidth of crystalline perovskite photodetectors making use of the spectral filtering at the surface.
RESUMEN
The performance of solution-processed solar cells strongly depends on the geometrical structure and roughness of the photovoltaic layers formed during film drying. During the drying process, the interplay of crystallization and liquid-liquid demixing leads to structure formation on the nano- and microscale and to the final rough film. In order to better understand how the film structure can be improved by process engineering, we aim at theoretically investigating these systems by means of phase-field simulations. We introduce an evaporation model based on the Cahn-Hilliard equation for the evolution of the fluid concentrations coupled to the Allen-Cahn equation for the liquid-vapour phase transformation. We demonstrate its ability to match the experimentally measured drying kinetics and study the impact of the parameters of our model. Furthermore, the evaporation of solvent blends and solvent-vapour annealing are investigated. The dry film roughness emerges naturally from our set of equations, as illustrated through preliminary simulations of spinodal decomposition and film drying on structured substrates.
RESUMEN
Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.
RESUMEN
Effective, solution-processable designs of interfacial electron-transporting layers (ETLs) or hole-blocking layers are promising tools in modern electronic devices, e.g., to improve the performance, cost, and stability of perovskite-based solar cells. Herein, we introduce a facile synthetic route of thiazole-modified carbon nitride with 1.5 nm thick nanosheets which can be processed to a homogeneous, metal-free ETL for inverted perovskite solar cells. We show that thiazole-modified carbon nitride enables electronic interface enhancement via suppression of charge recombination, achieving 1.09 V in Voc and a rise to 20.17 mA/cm2 in Jsc. Hence, this report presents the successful implementation of a carbon-nitride-based structure to boost charge extraction from the perovskite absorber toward the electron transport layer in p-i-n devices.
RESUMEN
Mixed-halide perovskites have emerged as promising materials for optoelectronics due to their tunable band gap in the entire visible region. A challenge remains, however, in the photoinduced phase segregation, narrowing the band gap of mixed-halide perovskites under illumination thus restricting applications. Here, we use a combination of spatially resolved and bulk measurements to give an in-depth insight into this important yet unclear phenomenon. We demonstrate that photoinduced phase segregation in mixed-halide perovskites selectively occurs at the grain boundaries rather than within the grain centers by using shear-force scanning probe microscopy in combination with confocal optical spectroscopy. Such difference is further evidenced by light-biased bulk Fourier-transform photocurrent spectroscopy, which shows the iodine-rich domain as a minority phase coexisting with the homogeneously mixed phase during illumination. By mapping the surface potential of mixed-halide perovskites, we evidence the higher concentration of positive space charge near the grain boundary possibly provides the initial driving force for phase segregation, while entropic mixing dominates the reverse process. Our work offers detailed insight into the microscopic processes occurring at the boundary of crystalline perovskite grains and will support the development of better passivation strategies, ultimately allowing the processing of more environmentally stable perovskite films.
RESUMEN
All-polymer solar cells (all-PSCs) composed of conjugated polymers as both donor and acceptor components in bulk heterojunction photoactive layers have attracted increasing attention. However, it is a big challenge to achieve optimal morphology in polymer:polymer blends. In response, we report herein a new strategy to adjust the nanoscale organization for all-PSCs. Specifically, side chain engineering of the well-known naphthalene diimide (NDI)-based polymer N2200 is modulated by introducing a fraction of linear oligoethylene oxide (OE) side chains to replace branched alkyl chains on the NDI units and by synthesizing a series of NDI-based polymer acceptors NOE x, where x is the percentage of OE chain substituted NDI units relative to total NDI units. Compared to the reference polymer NOE0, OE-chain-containing polymer NOE10 offers a much higher power conversion efficiency (PCE) of 8.1% with a record high fill factor (FF) of 0.75 in all-PSCs. Moreover, the NOE10-based all-PSC exhibits excellent long-term and thermal stabilities with >97% of the initial PCE being maintained after 300 h of aging at 65 °C. This work demonstrates an effective morphology optimization strategy to achieve highly efficient and stable all-PSCs and shows the excellent potential of NOE10 as an alternative to commercially available acceptor polymers N2200.
RESUMEN
Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.
RESUMEN
In the past few years, hybrid organic-inorganic and all-inorganic metal halide perovskite nanocrystals have become one of the most interesting materials for optoelectronic applications. Here, we report a facile and rapid room temperature synthesis of 15-25 nm formamidinium CH(NH2)2PbX3 (X = Cl, Br, I, or mixed Cl/Br and Br/I) colloidal nanocrystals by ligand-assisted reprecipitation (LARP). The cubic and platelet-like nanocrystals with their emission in the range of 415-740 nm, full width at half-maximum (fwhm) of 20-44 nm, and radiative lifetimes of 5-166 ns enable band gap tuning by halide composition as well as by their thickness tailoring; they have a high photoluminescence quantum yield (up to 85%), colloidal and thermodynamic stability. Combined with surface modification that prevents degradation by water, this nanocrystalline material is an ideal candidate for optoelectronic devices and applications. In addition, optoelectronic measurements verify that the photodetector based on FAPbI3 nanocrystals paves the way for perovskite quantum dot photovoltaics.
RESUMEN
We present detailed numerical and experimental investigation of thin-film organic solar cells with a micro-textured light management foil applied on top of the front glass substrate. We first demonstrate that measurements of small-area laboratory solar cells are susceptible to a significant amount of optical losses that could lead to false interpretation of the measurement results. Using the combined optical model CROWM calibrated with realistic optical properties of organic films and other layers, we identify the origins of these losses and quantify the extent of their influence. Further on, we identify the most important light management mechanisms of the micro-textured foil, among which the prevention of light escaping at the front side of the cell is revealed as the dominant one. Detailed three-dimensional simulations show that the light-management foil applied on top of a large-area organic solar cell can reduce the total reflection losses by nearly 60% and improve the short-circuit current density by almost 20%. Finally, by assuming realistic open-circuit voltage and especially the realistic fill factor that deteriorates as the absorber layer thickness is increased, we determine the optimal absorber layer thickness that would result in the highest power conversion efficiency of the investigated organic solar cells.
RESUMEN
We have designed a series of molecules and developed synthetic methodology that allows for the inclusion of structural diversity along both the lateral and vertical axes of the basic TCNQ skeleton. In the lateral direction, benzoannulation extends the π-system through (hetero)acene formation, whereas incorporation of a [3]cumulene increases delocalization vertically. The potential of these new molecules as semiconductors is explored through UV/Vis spectroscopy, cyclic voltammetry, X-ray crystallography, thin-film formation, and mobility measurements (using space charge limited current measurements).