Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 31(7): 1764-73, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22343944

RESUMEN

The deregulation of brain cholesterol metabolism is typical in acute neuronal injury (such as stroke, brain trauma and epileptic seizures) and chronic neurodegenerative diseases (Alzheimer's disease). Since both conditions are characterized by excessive stimulation of glutamate receptors, we have here investigated to which extent excitatory neurotransmission plays a role in brain cholesterol homeostasis. We show that a short (30 min) stimulation of glutamatergic neurotransmission induces a small but significant loss of membrane cholesterol, which is paralleled by release to the extracellular milieu of the metabolite 24S-hydroxycholesterol. Consistent with a cause-effect relationship, knockdown of the enzyme cholesterol 24-hydroxylase (CYP46A1) prevented glutamate-mediated cholesterol loss. Functionally, the loss of cholesterol modulates the magnitude of the depolarization-evoked calcium response. Mechanistically, glutamate-induced cholesterol loss requires high levels of intracellular Ca(2+), a functional stromal interaction molecule 2 (STIM2) and mobilization of CYP46A1 towards the plasma membrane. This study underscores the key role of excitatory neurotransmission in the control of membrane lipid composition, and consequently in neuronal membrane organization and function.


Asunto(s)
Colesterol/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colesterol 24-Hidroxilasa , Técnicas de Silenciamiento del Gen , Ácido Glutámico/farmacología , Hipocampo/efectos de los fármacos , Hidroxicolesteroles/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Molécula de Interacción Estromal 2
2.
J Neurochem ; 131(1): 33-41, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24903831

RESUMEN

The tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel Nav 1.8 is predominantly expressed in peripheral afferent neurons, but in case of neuronal injury an ectopic and detrimental expression of Nav 1.8 occurs in neurons of the CNS. In CNS neurons, Nav 1.2 and Nav 1.6 channels accumulate at the axon initial segment, the site of the generation of the action potential, through a direct interaction with the scaffolding protein ankyrin G (ankG). This interaction is regulated by protein kinase CK2 phosphorylation. In this study, we quantitatively analyzed the interaction between Nav 1.8 and ankG. GST pull-down assay and surface plasmon resonance technology revealed that Nav 1.8 strongly and constitutively interacts with ankG, in comparison to what observed for Nav 1.2. An ion channel bearing the ankyrin-binding motif of Nav 1.8 displaced the endogenous Nav 1 accumulation at the axon initial segment of hippocampal neurons. Finally, Nav 1.8 and ankG co-localized in skin nerves fibers. Altogether, these results indicate that Nav 1.8 carries all the information required for its localization at ankG micro-domains. The constitutive binding of Nav 1.8 with ankG could contribute to the pathological aspects of illnesses where Nav 1.8 is ectopically expressed in CNS neurons.


Asunto(s)
Ancirinas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Datos de Secuencia Molecular , Embarazo , Unión Proteica/fisiología , Ratas , Ratas Wistar
3.
Semin Cell Dev Biol ; 22(2): 171-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20934527

RESUMEN

In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the high concentration of Nav channels. Understanding how neurons regulate the expression and discrete localization of Nav channels is critical to understanding the diversity of normal neuronal function as well as neuronal dysfunction caused by defects in these processes. Here, we review the mechanisms establishing the clustering of Nav channels at the AIS and in the node and discuss how the alterations of Nav channel clustering can lead to certain pathophysiologies.


Asunto(s)
Neuronas/metabolismo , Canales de Sodio/metabolismo , Animales , Humanos , Activación del Canal Iónico , Unión Proteica , Transporte de Proteínas
4.
Cell Rep ; 36(5): 109499, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348158

RESUMEN

The synaptic removal of AMPA-type glutamate receptors (AMPARs) is a core mechanism for hippocampal long-term depression (LTD). In this study, we address the role of microtubule-dependent transport of AMPARs as a driver for vesicular trafficking and sorting during LTD. Here, we show that the kinesin-1 motor KIF5A/C is strictly required for LTD expression in CA3-to-CA1 hippocampal synapses. Specifically, we find that KIF5 is required for an efficient internalization of AMPARs after NMDA receptor activation. We show that the KIF5/AMPAR complex is assembled in an activity-dependent manner and associates with microsomal membranes upon LTD induction. This interaction is facilitated by the vesicular adaptor protrudin, which is also required for LTD expression. We propose that protrudin links KIF5-dependent transport to endosomal sorting, preventing AMPAR recycling to synapses after LTD induction. Therefore, this work identifies an activity-dependent molecular motor and the vesicular adaptor protein that executes AMPAR synaptic removal during LTD.


Asunto(s)
Cinesinas/metabolismo , Depresión Sináptica a Largo Plazo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Dineínas/metabolismo , Femenino , Masculino , Transporte de Proteínas , Ratas Wistar
5.
J Cell Biol ; 208(6): 791-806, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25753037

RESUMEN

Neurotransmitter receptor trafficking during synaptic plasticity requires the concerted action of multiple signaling pathways and the protein transport machinery. However, little is known about the contribution of lipid metabolism during these processes. In this paper, we addressed the question of the role of cholesterol in synaptic changes during long-term potentiation (LTP). We found that N-methyl-d-aspartate-type glutamate receptor (NMDAR) activation during LTP induction leads to a rapid and sustained loss or redistribution of intracellular cholesterol in the neuron. A reduction in cholesterol, in turn, leads to the activation of Cdc42 and the mobilization of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) from Rab11-recycling endosomes into the synaptic membrane, leading to synaptic potentiation. This process is accompanied by an increase of NMDAR function and an enhancement of LTP. These results imply that cholesterol acts as a sensor of NMDAR activation and as a trigger of downstream signaling to engage small GTPase (guanosine triphosphatase) activation and AMPAR synaptic delivery during LTP.


Asunto(s)
Colesterol/metabolismo , Potenciación a Largo Plazo , Receptores AMPA/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Región CA1 Hipocampal/citología , Membrana Celular/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Plasticidad Neuronal , Neuronas/fisiología , Transporte de Proteínas , Ratas , Transmisión Sináptica , Técnicas de Cultivo de Tejidos , Proteínas de Unión al GTP rab/metabolismo
6.
PLoS One ; 8(9): e71857, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069139

RESUMEN

The Insulin Receptor (InR) in Drosophila presents features conserved in its mammalian counterparts. InR is required for growth; it is expressed in the central and embryonic nervous system and modulates the time of differentiation of the eye photoreceptor without altering cell fate. We show that the InR is required for the formation of the peripheral nervous system during larval development and more particularly for the formation of sensory organ precursors (SOPs) on the fly notum and scutellum. SOPs arise in the proneural cluster that expresses high levels of the proneural proteins Achaete (Ac) and Scute (Sc). The other cells will become epidermis due to lateral inhibition induced by the Notch (N) receptor signal that prevents its neighbors from adopting a neural fate. In addition, misexpression of the InR or of other components of the pathway (PTEN, Akt, FOXO) induces the development of an abnormal number of macrochaetes that are Drosophila mechanoreceptors. Our data suggest that InR regulates the neural genes ac, sc and sens. The FOXO transcription factor which is localized in the cytoplasm upon insulin uptake, displays strong genetic interaction with the InR and is involved in Ac regulation. The genetic interactions between the epidermal growth factor receptor (EGFR), Ras and InR/FOXO suggest that these proteins cooperate to induce neural gene expression. Moreover, InR/FOXO is probably involved in the lateral inhibition process, since genetic interactions with N are highly significant. These results show that the InR can alter cell fate, independently of its function in cell growth and proliferation.


Asunto(s)
Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Receptor de Insulina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Neurosci Lett ; 486(2): 92-100, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20817077

RESUMEN

In neurons, voltage-gated sodium (Nav) channels underlie the generation and propagation of the action potential. The proper targeting and concentration of Nav channels at the axon initial segment (AIS) and at the nodes of Ranvier are therefore vital for neuronal function. In AIS and nodes, Nav channels are part of specific supra-molecular complexes that include accessory proteins, adhesion proteins and cytoskeletal adaptors. Multiple approaches, from biochemical characterization of protein-protein interactions to functional studies using mutant mice, have addressed the mechanisms of Nav channel targeting to AIS and nodes. This review summarizes our current knowledge of both the intrinsic determinants and the role of partner proteins in Nav targeting. A few fundamental trafficking mechanisms, such as selective endocytosis and diffusion/retention, have been characterized. However, a lot of exciting questions are still open, such as the mechanism of differentiated Nav subtype localization and targeting, and the possible interplay between electrogenesis properties and Nav concentration at the AIS and the nodes.


Asunto(s)
Neuronas/metabolismo , Canales de Sodio/fisiología , Animales , Axones/metabolismo , Difusión , Endocitosis , Humanos , Activación del Canal Iónico , Ratones , Complejos Multiproteicos/metabolismo , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Nódulos de Ranvier/metabolismo , Transducción de Señal , Canales de Sodio/genética
8.
J Cell Biol ; 191(2): 383-95, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20956383

RESUMEN

In mammalian neurons, the precise accumulation of sodium channels at the axonal initial segment (AIS) ensures action potential initiation. This accumulation precedes the immobilization of membrane proteins and lipids by a diffusion barrier at the AIS. Using single-particle tracking, we measured the mobility of a chimeric ion channel bearing the ankyrin-binding motif of the Nav1.2 sodium channel. We found that ankyrin G (ankG) limits membrane diffusion of ion channels when coexpressed in neuroblastoma cells. Site-directed mutants with decreased affinity for ankG exhibit increased diffusion speeds. In immature hippocampal neurons, we demonstrated that ion channel immobilization by ankG is regulated by protein kinase CK2 and occurs as soon as ankG accumulates at the AIS of elongating axons. Once the diffusion barrier is formed, ankG is still required to stabilize ion channels. In conclusion, our findings indicate that specific binding to ankG constitutes the initial step for Nav channel immobilization at the AIS membrane and precedes the establishment of the diffusion barrier.


Asunto(s)
Ancirinas/fisiología , Axones/metabolismo , Membrana Celular/metabolismo , Canales de Sodio/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/fisiología , Línea Celular , Ratones , Datos de Secuencia Molecular , Fosforilación , Transporte de Proteínas , Alineación de Secuencia , Canales de Sodio/química
9.
J Cell Biol ; 183(6): 1101-14, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19064667

RESUMEN

In neurons, generation and propagation of action potentials requires the precise accumulation of sodium channels at the axonal initial segment (AIS) and in the nodes of Ranvier through ankyrin G scaffolding. We found that the ankyrin-binding motif of Na(v)1.2 that determines channel concentration at the AIS depends on a glutamate residue (E1111), but also on several serine residues (S1112, S1124, and S1126). We showed that phosphorylation of these residues by protein kinase CK2 (CK2) regulates Na(v) channel interaction with ankyrins. Furthermore, we observed that CK2 is highly enriched at the AIS and the nodes of Ranvier in vivo. An ion channel chimera containing the Na(v)1.2 ankyrin-binding motif perturbed endogenous sodium channel accumulation at the AIS, whereas phosphorylation-deficient chimeras did not. Finally, inhibition of CK2 activity reduced sodium channel accumulation at the AIS of neurons. In conclusion, CK2 contributes to sodium channel organization by regulating their interaction with ankyrin G.


Asunto(s)
Ancirinas/metabolismo , Axones/metabolismo , Quinasa de la Caseína II/metabolismo , Membrana Celular/metabolismo , Canales de Sodio/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Axones/efectos de los fármacos , Axones/enzimología , Quinasa de la Caseína II/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Células Cultivadas , Análisis por Conglomerados , Ácido Glutámico/metabolismo , Hipocampo/citología , Activación del Canal Iónico/efectos de los fármacos , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Mutación Puntual/genética , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Nódulos de Ranvier/efectos de los fármacos , Nódulos de Ranvier/enzimología , Ratas , Serina/metabolismo , Canales de Sodio/química
10.
J Neurovirol ; 13(3): 233-41, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17613713

RESUMEN

Disseminated herpes simplex virus type 1 (HSV-1) infection during pregnancy is poorly described even though it is associated with high maternal and fetal morbidity and neonatal mortality in humans. In a previous paper using mice as a model, the authors demonstrated that HSV-1 is transmitted hematogenously from mother to offspring, the virus colonizing the central nervous system and provoking high mortality. In the present study, viral DNA levels in latently infected mothers were investigated during pregnancy and after delivery in mice. Samples from different organs were obtained before gestation (latency), three times during pregnancy (17, 4.5, and 1 day before delivery), and four times after delivery (1 day, 1 week, 1 and 2 months). A dramatic decrease in viral DNA concentration was observed during pregnancy, especially in the nervous system, with postnatal recovery to latent levels. All the brain regions studied showed similar trends. The viral copy numbers detected in mothers at delivery +1 day were independent of viral inoculum size. The spread of the virus to the above organs was examined immunohistochemically and, in general, more intense viral staining was observed after delivery in each. Because immunoglobulin levels can be modified by infections during pregnancy, the authors examined the levels of specific HSV-1 antibodies. Variation in HSV-1 DNA concentration was found to be associated with changes in the full spectrum of immunoglobulins (but especially immunoglobulin M [IgM]) over pregnancy, whereas at delivery -1 day a significant inverse relationship between immunoglobulins and HSV-1 DNA was observed. IgGs provided protection during the postnatal phase.


Asunto(s)
Anticuerpos Antivirales/sangre , Encefalitis por Herpes Simple/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Complicaciones Infecciosas del Embarazo/virología , Animales , Animales Recién Nacidos , ADN Viral/metabolismo , Modelos Animales de Enfermedad , Encefalitis por Herpes Simple/patología , Femenino , Herpes Simple/patología , Herpesvirus Humano 1/genética , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Inmunoglobulina M/metabolismo , Ratones , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA