Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 18(8): 8311-31, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20588677

RESUMEN

Spaceborne remote sensing can be used to retrieve the atmospheric composition and complement the surface or airborne measurement networks. In recent years, a lot of attention has been placed on the monitoring of carbon dioxide for an estimate of surface fluxes from the observed spatial and temporal gradients of its concentration. Although other techniques may be used to estimate atmospheric CO(2) concentration, the most promising for the near future is the absorption spectroscopy, focusing on the CO(2) absorption lines at 1.6 and/or 2.0 microns. For this objective, the French space agency (CNES) has developed a new spectrometer concept that is sufficiently compact to be placed onboard a microsatellite platform. The principle is that of a Fourier Transform Spectrometer (FTS), although the classical moving mirror is replaced by two sets of mirrors organized in steps. The interferogram is then imaged on a CCD matrix. The concept allows a very high resolving power, although limited to narrow spectral bands, which is well suited for the observation of a few CO(2) absorption lines. The laboratory model shows that a resolving power of about 65000 is achieved with a signal to noise on the spectra around 300. A modulating plate on the light path allows an easy of the path difference. Although this component adds some complexity to the instrument, it greatly improves the information content of the measurements.

2.
Appl Opt ; 45(5): 984-92, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16512542

RESUMEN

We revisit the nulling interferometer performances that are needed for direct detection and the spectroscopic analysis of exoplanets, e.g., with the DARWIN [European Space Agency-SCI 12 (2000)] or TPF-I [JPL Publ. 05-5, (2005)] missions. Two types of requirement are found, one concerning the mean value of the instrumental nulling function (nl(lambda)) and another regarding its stability. The stress is usually put on the former. It is stringent at short wavelengths but somewhat relaxed at longer wavelengths. The latter, which we call the variability noise condition, does not usually receive enough attention. It is required regardless of telescope size and stellar distance. The results from three nulling experiments performed in laboratories around the world are reported and compared with the requirements. All three exhibit 1/f noise that is incompatible with the performances required by the mission. As pointed out by Lay [Appl. Opt. 43, 6100-6123 (2004)], this stability problem is not fully solved by modulation techniques. Adequate solutions must be found that are likely to include servo systems using the stellar signal itself as a reference and internal metrology with high stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA