Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 100(7): 1737-46, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21463587

RESUMEN

The N-terminal extension and phosphorylation of the myosin regulatory light chain (RLC) independently improve Drosophila melanogaster flight performance. Here we examine the functional and structural role of the RLC in chemically skinned fibers at various thick and thin filament lattice spacings from four transgenic Drosophila lines: rescued null or control (Dmlc2(+)), truncated N-terminal extension (Dmlc2(Δ2-46)), disrupted myosin light chain kinase phosphorylation sites (Dmlc2(S66A,S67A)), and dual mutant (Dmlc2(Δ2-46; S66A,S67A)). The N-terminal extension truncation and phosphorylation sites disruption mutations decreased oscillatory power output and the frequency of maximum power output in maximally Ca(2+)-activated fibers compressed to near in vivo inter-thick filament spacing, with the phosphorylation sites disruption mutation having a larger affect. The diminished power output parameters with the N-terminal extension truncation and phosphorylation sites disruption mutations were due to the reduction of the number of strongly-bound cross-bridges and rate of myosin force production, with the larger parameter reductions in the phosphorylation sites disruption mutation additionally related to reduced myosin attachment time. The phosphorylation and N-terminal extension-dependent boost in cross-bridge kinetics corroborates previous structural data, which indicate these RLC attributes play a complementary role in moving and orienting myosin heads toward actin target sites, thereby increasing fiber and whole fly power generation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Citoesqueleto de Actina/química , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Vuelo Animal , Fibras Musculares Esqueléticas/metabolismo , Fosforilación , Viscosidad , Difracción de Rayos X
2.
J Physiol ; 588(Pt 20): 4039-53, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20724360

RESUMEN

Skeletal muscle function is impaired in heart failure patients due, in part, to loss of myofibrillar protein content, in particular myosin. In the present study, we utilized small-amplitude sinusoidal analysis for the first time in single human skeletal muscle fibres to measure muscle mechanics, including cross-bridge kinetics, to determine if heart failure further impairs contractile performance by altering myofibrillar protein function. Patients with chronic heart failure (n = 9) and controls (n = 6) were recruited of similar age and physical activity to diminish the potentially confounding effects of ageing and muscle disuse. Patients showed decreased cross-bridge kinetics in myosin heavy chain (MHC) I and IIA fibres, partially due to increased myosin attachment time (t(on)). The increased t(on) compensated for myosin protein loss previously found in heart failure patients by increasing the fraction of the total cycle time myosin is bound to actin, resulting in a similar number of strongly bound cross-bridges in patients and controls. Accordingly, isometric tension did not differ between patients and controls in MHC I or IIA fibres. Patients also had decreased calcium sensitivity in MHC IIA fibres and alterations in the viscoelastic properties of the lattice structure of MHC I and IIA fibres. Collectively, these results show that heart failure alters skeletal muscle contraction at the level of the myosin-actin cross-bridge, leading to changes in muscle mechanics which could contribute to impaired muscle function. Additionally, we uncovered a unique kinetic property of MHC I fibres, a potential indication of two distinct populations of cross-bridges, which may have important physiological consequences.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiopatología , Cadenas Pesadas de Miosina/metabolismo , Envejecimiento/fisiología , Femenino , Insuficiencia Cardíaca/metabolismo , Humanos , Cinética , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo
3.
Biophys J ; 96(10): 4132-43, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19450484

RESUMEN

The subfragment 2/light meromyosin "hinge" region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Miofibrillas/química , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/metabolismo , Miosina Tipo II/química , Miosina Tipo II/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Fenómenos Biomecánicos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Humanos , Cinética , Microscopía Electrónica , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/fisiología , Miofibrillas/fisiología , Subfragmentos de Miosina/química , Miosina Tipo II/genética , Sarcómeros/química , Sarcómeros/fisiología , Difracción de Rayos X
4.
Biophys J ; 95(5): 2391-401, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18515368

RESUMEN

We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.


Asunto(s)
Citoesqueleto de Actina/fisiología , Actomiosina/fisiología , Envejecimiento/fisiología , Drosophila melanogaster/fisiología , Vuelo Animal , Citoesqueleto de Actina/ultraestructura , Animales , Drosophila melanogaster/ultraestructura , Femenino , Contracción Isométrica , Microscopía Electrónica , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Miosinas/fisiología , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA