RESUMEN
Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.
Asunto(s)
Neoplasias/genética , Neoplasias/inmunología , Empalme del ARN/genética , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epítopos/inmunología , Etilenodiaminas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Inflamación/patología , Ratones Endogámicos C57BL , Péptidos/metabolismo , Isoformas de Proteínas/metabolismo , Pirroles/farmacología , Empalme del ARN/efectos de los fármacos , Sulfonamidas/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.
Asunto(s)
Neoplasias Hematológicas , Proteínas Musculares , Mutación , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Hematopoyesis/genética , Intrones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismoRESUMEN
Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios de Cohortes , Humanos , Masculino , Mutación , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológicoRESUMEN
Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.
Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/citología , ARN Largo no Codificante , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Redes Reguladoras de Genes , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Complejo Represivo Polycomb 2/metabolismo , RatasRESUMEN
Oncogenic mutations in the RNA splicing factors SRSF2, SF3B1, and U2AF1 are the most frequent class of mutations in myelodysplastic syndromes and are also common in clonal hematopoiesis, acute myeloid leukemia, chronic lymphocytic leukemia, and a variety of solid tumors. They cause genome-wide splicing alterations that affect important regulators of hematopoiesis. Several mRNA isoforms promoted by the various splicing factor mutants comprise a premature termination codon (PTC) and are therefore potential targets of nonsense-mediated mRNA decay (NMD). In light of the mechanistic relationship between splicing and NMD, we sought evidence for a specific role of mutant SRSF2 in NMD. We show that SRSF2 Pro95 hot spot mutations elicit enhanced mRNA decay, which is dependent on sequence-specific RNA binding and splicing. SRSF2 mutants enhance the deposition of exon junction complexes (EJCs) downstream from the PTC through RNA-mediated molecular interactions. This architecture then favors the association of key NMD factors to elicit mRNA decay. Gene-specific blocking of EJC deposition by antisense oligonucleotides circumvents aberrant NMD promoted by mutant SRSF2, restoring the expression of PTC-containing transcript. Our study uncovered critical effects of SRSF2 mutants in hematologic malignancies, reflecting the regulation at multiple levels of RNA metabolism, from splicing to decay.
Asunto(s)
Mutación/genética , Síndromes Mielodisplásicos/genética , Empalme del ARN/genética , Estabilidad del ARN/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Degradación de ARNm Mediada por Codón sin Sentido/genéticaRESUMEN
Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.
Asunto(s)
Empalme Alternativo , Arabidopsis , Exones , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Humanos , Ratones , Empalme Alternativo/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Codón sin Sentido/genética , Secuencia Conservada , Exones/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Recursive splicing (RS) starts by defining an "RS-exon," which is then spliced to the preceding exon, thus creating a recursive 5' splice site (RS-5ss). Previous studies focused on cryptic RS-exons, and now we find that the exon junction complex (EJC) represses RS of hundreds of annotated, mainly constitutive RS-exons. The core EJC factors, and the peripheral factors PNN and RNPS1, maintain RS-exon inclusion by repressing spliceosomal assembly on RS-5ss. The EJC also blocks 5ss located near exon-exon junctions, thus repressing inclusion of cryptic microexons. The prevalence of annotated RS-exons is high in deuterostomes, while the cryptic RS-exons are more prevalent in Drosophila, where EJC appears less capable of repressing RS. Notably, incomplete repression of RS also contributes to physiological alternative splicing of several human RS-exons. Finally, haploinsufficiency of the EJC factor Magoh in mice is associated with skipping of RS-exons in the brain, with relevance to the microcephaly phenotype and human diseases.
Asunto(s)
Empalme Alternativo/fisiología , Exones/fisiología , Sitios de Empalme de ARN/fisiología , Animales , Línea Celular , Núcleo Celular , Drosophila , Células HEK293 , Células HeLa , Humanos , Intrones , Células K562 , Ratones , Proteínas Nucleares , Precursores del ARN/fisiología , Empalme del ARN/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN , Ribonucleoproteínas/fisiología , Transcriptoma/genéticaRESUMEN
Although branchpoint recognition is an essential component of intron excision during the RNA splicing process, the branchpoint itself is frequently assumed to be a basal, rather than regulatory, sequence feature. However, this assumption has not been systematically tested due to the technical difficulty of identifying branchpoints and quantifying their usage. Here, we analyzed â¼1.31 trillion reads from 17,164 RNA sequencing data sets to demonstrate that almost all human introns contain multiple branchpoints. This complexity holds even for constitutive introns, 95% of which contain multiple branchpoints, with an estimated five to six branchpoints per intron. Introns upstream of the highly regulated ultraconserved poison exons of SR genes contain twice as many branchpoints as the genomic average. Approximately three-quarters of constitutive introns exhibit tissue-specific branchpoint usage. In an extreme example, we observed a complete switch in branchpoint usage in the well-studied first intron of HBB (ß-globin) in normal bone marrow versus metastatic prostate cancer samples. Our results indicate that the recognition of most introns is unexpectedly complex and tissue-specific and suggest that alternative splicing catalysis typifies the majority of introns even in the absence of differences in the mature mRNA.
Asunto(s)
Empalme Alternativo , Intrones , Sitios de Empalme de ARN , Exones , Expresión Génica , Humanos , Anotación de Secuencia Molecular , Especificidad de Órganos , Análisis de Secuencia de ARNRESUMEN
SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/genética , Empalme del ARN , Empalmosomas/metabolismo , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/patología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalmosomas/genética , Factores de Transcripción/metabolismoRESUMEN
Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.
Asunto(s)
Empalme Alternativo/genética , Carcinogénesis/genética , Epigénesis Genética , Leucemia Mieloide Aguda/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Proteínas de Unión al ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Mutación/genética , ARN Polimerasa II/metabolismo , Factores de Empalme Serina-Arginina/genética , TranscriptomaRESUMEN
UPF1 is an RNA helicase that orchestrates nonsense-mediated decay and other RNA surveillance pathways. While UPF1 is best known for its basal cytoprotective role in degrading aberrant RNAs, UPF1 also degrades specific, normally occurring mRNAs to regulate diverse cellular processes. Here we describe a role for UPF1 in regulated protein decay, wherein UPF1 acts as an E3 ubiquitin ligase to repress human skeletal muscle differentiation. Suppressing UPF1 accelerates myogenesis, while ectopically increasing UPF1 levels slows myogenesis. UPF1 promotes the decay of MYOD protein, a transcription factor that is a master regulator of myogenesis, while leaving MYOD mRNA stability unaffected. UPF1 acts as an E3 ligase via its RING domain to promote MYOD protein ubiquitination and degradation. Our data characterize a regulatory role for UPF1 in myogenesis, and they demonstrate that UPF1 provides a mechanistic link between the RNA and protein decay machineries in human cells.
Asunto(s)
Diferenciación Celular , Desarrollo de Músculos , Músculo Esquelético/enzimología , Mioblastos Esqueléticos/enzimología , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Abajo , Femenino , Células HEK293 , Humanos , Masculino , Músculo Esquelético/citología , Proteína MioD/genética , Proteína MioD/metabolismo , Dominios Proteicos , Proteolisis , ARN Helicasas , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo , Transactivadores/química , Transactivadores/genética , Transcripción Genética , Transfección , UbiquitinaciónRESUMEN
Thomas and colleagues (pp. 1122-1133) demonstrate severe dysregulation of developmentally regulated alternative splicing and polyadenylation in congenital myotonic dystrophy (CDM). In doing so, they also highlight the importance of these post-transcriptional processes during normal fetal muscle development. Finally, they generate and characterize a mouse model of CDM that lacks all three Muscleblind-like proteins.
Asunto(s)
Distrofia Miotónica , ARN , Empalme Alternativo , Animales , Empalme del ARN , Proteínas de Unión al ARN/genéticaRESUMEN
SF3B1 splicing factor mutations are near-universally found in myelodysplastic syndromes (MDS) with ring sideroblasts (RS), a clonal hematopoietic disorder characterized by abnormal erythroid cells with iron-loaded mitochondria. Despite this remarkably strong genotype-to-phenotype correlation, the mechanism by which mutant SF3B1 dysregulates iron metabolism to cause RS remains unclear due to an absence of physiological models of RS formation. Here, we report an induced pluripotent stem cell model of SF3B1-mutant MDS that for the first time recapitulates robust RS formation during in vitro erythroid differentiation. Mutant SF3B1 induces missplicing of â¼100 genes throughout erythroid differentiation, including proposed RS driver genes TMEM14C, PPOX, and ABCB7. All 3 missplicing events reduce protein expression, notably occurring via 5' UTR alteration, and reduced translation efficiency for TMEM14C. Functional rescue of TMEM14C and ABCB7, but not the non-rate-limiting enzyme PPOX, markedly decreased RS, and their combined rescue nearly abolished RS formation. Our study demonstrates that coordinated missplicing of mitochondrial transporters TMEM14C and ABCB7 by mutant SF3B1 sequesters iron in mitochondria, causing RS formation.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Síndromes Mielodisplásicos , Fosfoproteínas , Transportadoras de Casetes de Unión a ATP , Diferenciación Celular/genética , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Proteínas Mitocondriales/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/genética , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismoRESUMEN
Neoantigen-specific T cells are strongly implicated as being critical for effective immune checkpoint blockade treatment (ICB) (e.g., anti-PD-1 and anti-CTLA-4) and are being targeted for vaccination-based therapies. However, ICB treatments show uneven responses between patients, and neoantigen vaccination efficiency has yet to be established. Here, we characterize neoantigen-specific CD8+ T cells in a tumor that is resistant to ICB and neoantigen vaccination. Leveraging the use of mass cytometry combined with multiplex major histocompatibility complex (MHC) class I tetramer staining, we screened and identified tumor neoantigen-specific CD8+ T cells in the Lewis Lung carcinoma (LLC) tumor model (mRiok1). We observed an expansion of mRiok1-specific CD8+ tumor-infiltrating lymphocytes (TILs) after ICB targeting PD-1 or CTLA-4 with no sign of tumor regression. The expanded neoantigen-specific CD8+ TILs remained phenotypically and functionally exhausted but displayed cytotoxic characteristics. When combining both ICB treatments, mRiok1-specific CD8+ TILs showed a stem-like phenotype and a higher capacity to produce cytokines, but tumors did not show signs of regression. Furthermore, combining both ICB treatments with neoantigen vaccination did not induce tumor regression either despite neoantigen-specific CD8+ TIL expansion. Overall, this work provides a model for studying neoantigens in an immunotherapy nonresponder model. We showed that a robust neoantigen-specific T-cell response in the LLC tumor model could fail in tumor response to ICB, which will have important implications in designing future immunotherapeutic strategies.
Asunto(s)
Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/farmacología , Linfocitos T CD8-positivos/inmunología , Carcinoma Pulmonar de Lewis/inmunología , Resistencia a Antineoplásicos , Linfocitos Infiltrantes de Tumor/inmunología , Animales , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Femenino , Ratones , Ratones Endogámicos C57BLRESUMEN
Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis.
Asunto(s)
Hematopoyesis/genética , Síndromes Mielodisplásicos/genética , Empalmosomas/genética , Animales , Epigénesis Genética , Humanos , Modelos Animales , Mutación/genética , Empalme del ARNRESUMEN
Alternative splicing of pre-mRNAs plays a pivotal role during the establishment and maintenance of human cell types. Characterizing the trans-acting regulatory proteins that control alternative splicing has therefore been the focus of much research. Recent work has established that even core protein components of the spliceosome, which are required for splicing to proceed, can nonetheless contribute to splicing regulation by modulating splice site choice. We here show that the RNA components of the spliceosome likewise influence alternative splicing decisions. Although these small nuclear RNAs (snRNAs), termed U1, U2, U4, U5, and U6 snRNA, are present in equal stoichiometry within the spliceosome, we found that their relative levels vary by an order of magnitude during development, across tissues, and across cancer samples. Physiologically relevant perturbation of individual snRNAs drove widespread gene-specific differences in alternative splicing but not transcriptome-wide splicing failure. Genes that were particularly sensitive to variations in snRNA abundance in a breast cancer cell line model were likewise preferentially misspliced within a clinically diverse cohort of invasive breast ductal carcinomas. As aberrant mRNA splicing is prevalent in many cancers, we propose that a full understanding of such dysregulated pre-mRNA processing requires study of snRNAs, as well as protein splicing factors. Together, our data show that the RNA components of the spliceosome are not merely basal factors, as has long been assumed. Instead, these noncoding RNAs constitute a previously uncharacterized layer of regulation of alternative splicing, and contribute to the establishment of global splicing programs in both healthy and malignant cells.
Asunto(s)
Neoplasias/genética , ARN Mensajero/genética , Empalmosomas/genética , Transcriptoma/genética , Empalme Alternativo/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias/patología , Especificidad de Órganos/genética , ARN/genética , Empalme del ARN/genética , Factores de Empalme de ARN/genética , ARN Nuclear Pequeño/genéticaRESUMEN
Genes encoding the RNA splicing factors SF3B1, SRSF2, and U2AF1 are subject to frequent missense mutations in clonal hematopoiesis and diverse neoplastic diseases. Most "spliceosomal" mutations affect specific hotspot residues, resulting in splicing changes that promote disease pathophysiology. However, a subset of patients carries spliceosomal mutations that affect non-hotspot residues, whose potential functional contributions to disease are unstudied. Here, we undertook a systematic characterization of diverse rare and private spliceosomal mutations to infer their likely disease relevance. We used isogenic cell lines and primary patient materials to discover that 11 of 14 studied rare and private mutations in SRSF2 and U2AF1 induced distinct splicing alterations, including partially or completely phenocopying the alterations in exon and splice site recognition induced by hotspot mutations or driving "dual" phenocopies that mimicked 2 co-occurring hotspot mutations. Our data suggest that many rare and private spliceosomal mutations contribute to disease pathogenesis and illustrate the utility of molecular assays to inform precision medicine by inferring the potential disease relevance of newly discovered mutations.
Asunto(s)
Estudios de Asociación Genética , Mutación , Penetrancia , Fenotipo , Empalmosomas/genética , Línea Celular Tumoral , Biología Computacional/métodos , Exones , Perfilación de la Expresión Génica , Humanos , Sitios de Empalme de ARN , Empalme del ARN , Factores de Empalme de ARN/genética , TranscriptomaRESUMEN
Large-scale sequencing studies of hematologic malignancies have revealed notable epistasis among high-frequency mutations. One of the most striking examples of epistasis occurs for mutations in RNA splicing factors. These lesions are among the most common alterations in myeloid neoplasms and generally occur in a mutually exclusive manner, a finding attributed to their synthetic lethal interactions and/or convergent effects. Curiously, however, patients with multiple-concomitant splicing factor mutations have been observed, challenging our understanding of one of the most common examples of epistasis in hematologic malignancies. In this study, we performed bulk and single-cell analyses of patients with myeloid malignancy who were harboring ≥2 splicing factor mutations, to understand the frequency and basis for the coexistence of these mutations. Although mutations in splicing factors were strongly mutually exclusive across 4231 patients (q < .001), 0.85% harbored 2 concomitant bona fide splicing factor mutations, â¼50% of which were present in the same individual cells. However, the distribution of mutations in patients with double mutations deviated from that in those with single mutations, with selection against the most common alleles, SF3B1K700E and SRSF2P95H/L/R, and selection for less common alleles, such as SF3B1 non-K700E mutations, rare amino acid substitutions at SRSF2P95, and combined U2AF1S34/Q157 mutations. SF3B1 and SRSF2 alleles enriched in those with double-mutations had reduced effects on RNA splicing and/or binding compared with the most common alleles. Moreover, dual U2AF1 mutations occurred in cis with preservation of the wild-type allele. These data highlight allele-specific differences as critical in regulating the molecular effects of splicing factor mutations as well as their cooccurrences/exclusivities with one another.
Asunto(s)
Epistasis Genética , Neoplasias Hematológicas/genética , Mutación , Factores de Empalme de ARN/genética , Empalme del ARN , Alelos , Análisis Mutacional de ADN , Genómica , Humanos , Leucemia Mieloide/genética , Análisis de la Célula IndividualRESUMEN
Mutations affecting the spliceosomal protein U2AF1 are commonly found in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). We have generated mice that carry Cre-dependent knock-in alleles of U2af1(S34F), the murine version of the most common mutant allele of U2AF1 encountered in human cancers. Cre-mediated recombination in murine hematopoietic lineages caused changes in RNA splicing, as well as multilineage cytopenia, macrocytic anemia, decreased hematopoietic stem and progenitor cells, low-grade dysplasias, and impaired transplantability, but without lifespan shortening or leukemia development. In an attempt to identify U2af1(S34F)-cooperating changes that promote leukemogenesis, we combined U2af1(S34F) with Runx1 deficiency in mice and further treated the mice with a mutagen, N-ethyl-N-nitrosourea (ENU). Overall, 3 of 16 ENU-treated compound transgenic mice developed AML. However, AML did not arise in mice with other genotypes or without ENU treatment. Sequencing DNA from the three AMLs revealed somatic mutations homologous to those considered to be drivers of human AML, including predicted loss- or gain-of-function mutations in Tet2, Gata2, Idh1, and Ikzf1 However, the engineered U2af1(S34F) missense mutation reverted to WT in two of the three AML cases, implying that U2af1(S34F) is dispensable, or even selected against, once leukemia is established.