Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(15): e2205799, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36587980

RESUMEN

Filamentous fungi can synthesize a variety of nanoparticles (NPs), a process referred to as mycosynthesis that requires little energy input, do not require the use of harsh chemicals, occurs at near neutral pH, and do not produce toxic byproducts. While NP synthesis involves reactions between metal ions and exudates produced by the fungi, the chemical and biochemical parameters underlying this process remain poorly understood. Here, the role of fungal species and precursor salt on the mycosynthesis of zinc oxide (ZnO) NPs is investigated. This data demonstrates that all five fungal species tested are able to produce ZnO structures that can be morphologically classified into i) well-defined NPs, ii) coalesced/dissolving NPs, and iii) micron-sized square plates. Further, species-dependent preferences for these morphologies are observed, suggesting potential differences in the profile or concentration of the biochemical constituents in their individual exudates. This data also demonstrates that mycosynthesis of ZnO NPs is independent of the anion species, with nitrate, sulfate, and chloride showing no effect on NP production. These results enhance the understanding of factors controlling the mycosynthesis of ceramic NPs, supporting future studies that can enable control over the physical and chemical properties of NPs formed through this "green" synthesis method.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Nanopartículas/química , Metales , Iones , Nanopartículas del Metal/química
2.
Angew Chem Int Ed Engl ; 62(43): e202306572, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37682083

RESUMEN

Styrene-maleic acid copolymers (SMAs), and related amphiphilic copolymers, are promising tools for isolating and studying integral membrane proteins in a native-like state. However, they do not exhibit this ability universally, as several reports have found that SMAs and related amphiphilic copolymers show little to no efficiency when extracting specific membrane proteins. Recently, it was discovered that esterified SMAs could enhance the selective extraction of trimeric Photosystem I from the thylakoid membranes of thermophilic cyanobacteria; however, these polymers are susceptible to saponification that can result from harsh preparation or storage conditions. To address this concern, we herein describe the development of α-olefin-maleic acid copolymers (αMAs) that can extract trimeric PSI from cyanobacterial membranes with the highest extraction efficiencies observed when using any amphiphilic copolymers, including diisobutylene-co-maleic acid (DIBMA) and functionalized SMA samples. Furthermore, we will show that αMAs facilitate the formation of photosystem I-containing nanodiscs that retain an annulus of native lipids and a native-like activity. We also highlight how αMAs provide an agile, tailorable synthetic platform that enables fine-tuning hydrophobicity, controllable molar mass, and consistent monomer incorporation while overcoming shortcomings of prior amphiphilic copolymers.


Asunto(s)
Complejo de Proteína del Fotosistema I , Estireno , Membrana Dobles de Lípidos , Poliestirenos , Alquenos , Proteínas de la Membrana
3.
Biomacromolecules ; 23(11): 4749-4755, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36219772

RESUMEN

The detergent-free extraction of integral membrane proteins using styrene-maleic acid copolymers (SMAs) has shown promise as a potentially effective technique to isolate proteins in a more native-like conformation. As the field continues to develop, the protein selectivity and extraction efficiency of many analogues of traditional SMAs are being investigated. Recently, we discovered that the monoesterification of SMAs with alkoxy ethoxylate sidechains drastically affects the bioactivity of these copolymers in the extraction of photosystem I from the cyanobacterium Thermosynechococcus elongatus. However, subsequent investigations also revealed that the conditions under which these esterified SMA polymer analogues are prepared, purified, and stored can alter the structure of the alkoxy ethoxylate-functionalized SMA and perturb the protein extraction process. Herein, we demonstrate that the basic conditions required to solubilize SMA analogues may lead to deleterious saponification side reactions, cleaving the sidechains of an esterified SMA and dramatically decreasing its efficacy for protein extraction. We found that this process is highly dependent on temperature, with polymer samples being prepared and stored at lower temperatures exhibiting significantly fewer saponification side reactions. Furthermore, the effects of small-molecule impurities and exposure to light were also investigated, both of which are shown to have significant effects on the polymer structure and/or protein extraction process.


Asunto(s)
Maleatos , Proteínas de la Membrana , Proteínas de la Membrana/química , Maleatos/química , Poliestirenos/química , Polímeros/química
4.
Mol Cancer ; 20(1): 59, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789677

RESUMEN

Cancer cells that transit from primary tumours into the circulatory system are known as circulating tumour cells (CTCs). These cancer cells have unique phenotypic and genotypic characteristics which allow them to survive within the circulation, subsequently extravasate and metastasise. CTCs have emerged as a useful diagnostic tool using "liquid biopsies" to report on the metastatic potential of cancers. However, CTCs by their nature interact with components of the blood circulatory system on a constant basis, influencing both their physical and morphological characteristics as well as metastatic capabilities. These properties and the associated molecular profile may provide critical diagnostic and prognostic capabilities in the clinic. Platelets interact with CTCs within minutes of their dissemination and are crucial in the formation of the initial metastatic niche. Platelets and coagulation proteins also alter the fate of a CTC by influencing EMT, promoting pro-survival signalling and aiding in evading immune cell destruction. CTCs have the capacity to directly hijack immune cells and utilise them to aid in CTC metastatic seeding processes. The disruption of CTC clusters may also offer a strategy for the treatment of advance staged cancers. Therapeutic disruption of these heterotypical interactions as well as direct CTC targeting hold great promise, especially with the advent of new immunotherapies and personalised medicines. Understanding the molecular role that platelets, immune cells and the coagulation cascade play in CTC biology will allow us to identify and characterise the most clinically relevant CTCs from patients. This will subsequently advance the clinical utility of CTCs in cancer diagnosis/prognosis.


Asunto(s)
Coagulación Sanguínea , Plaquetas/metabolismo , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Animales , Biomarcadores , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/etiología , Comunicación Celular/genética , Comunicación Celular/inmunología , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/inmunología , Humanos , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/etiología , Neoplasias/patología
5.
Biomacromolecules ; 22(6): 2544-2553, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34038122

RESUMEN

Amphiphilic styrene-maleic acid copolymers (SMAs) have been shown to effectively extract membrane proteins surrounded by an annulus of native membrane lipids via the formation of nanodiscs. Recent reports have shown that 2-butoxyethanol-functionalized SMA derivatives promote the extraction of membrane proteins from thylakoid membranes, whereas unfunctionalized SMA is essentially ineffective. However, it is unknown how the extent of functionalization and identity of sidechains impact protein solubilization and specificity. Herein, we show that the monoesterification of an SMA polymer with hydrophobic alkoxy ethoxylate sidechains leads to an increased solubilization efficiency (SE) of trimeric photosystem I (PSI) from the membranes of cyanobacterium Thermosynechococcus elongatus. The specific SMA polymer used in this study, PRO 10235, cannot encapsulate single PSI trimers from this cyanobacterium; however, as it is functionalized with alkoxy ethoxylates of increasing alkoxy chain length, a clear increase in the trimeric PSI SE is observed. Furthermore, an exponential increase in the SE is observed when >50% of the maleic acid repeat units are monoesterified with long alkoxy ethoxylates, suggesting that the PSI extraction mechanism is highly dependent on both the number and length of the attached side chains.


Asunto(s)
Maleatos , Tilacoides , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros
6.
Biophys J ; 118(2): 337-351, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31882247

RESUMEN

Cyanobacterial photosystem I (PSI) functions as a light-driven cyt c6-ferredoxin/oxidoreductase located in the thylakoid membrane. In this work, the energy and charge transfer processes in PSI complexes isolated from Thermosynechococcus elongatus via conventional n-dodecyl-ß-D-maltoside solubilization (DM-PSI) and a, to our knowledge, new detergent-free method using styrene-maleic acid copolymers (SMA-PSI) have been investigated by pump-to-probe femtosecond laser spectroscopy. In DM-PSI preparations excited at 740 nm, the excitation remained localized on the long-wavelength chlorophyll forms within 0.1-20 ps and revealed little or no charge separation and oxidation of the special pair, P700. The formation of ion-radical pair P700+A1- occurred with a characteristic time of 36 ps, being kinetically controlled by energy transfer from the long-wavelength chlorophyll to P700. Quite surprisingly, the detergent-free SMA-PSI complexes upon excitation by these long-wave pulses undergo an ultrafast (<100 fs) charge separation in ∼45% of particles. In the remaining complexes (∼55%), the energy transfer to P700 occurred at ∼36 ps, similar to the DM-PSI. Both isolation methods result in a trimeric form of PSI, yet the SMA-PSI complexes display a heterogenous kinetic behavior. The much faster rate of charge separation suggests the existence of an ultrafast pathway for charge separation in the SMA-PSI that may be disrupted during detergent isolation.


Asunto(s)
Cianobacterias/enzimología , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema I/metabolismo , Cinética
7.
J Biol Chem ; 294(4): 1202-1217, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30504226

RESUMEN

Outer membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secrete extracellular vesicles (EVs) was not pursued until recently due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following their discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteria are implicated in virulence, toxin release, and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis. Here we report that L. monocytogenes produces EVs with diameters ranging from 20 to 200 nm, containing the pore-forming toxin listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Cell-free EV preparations were toxic to mammalian cells, the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC reduced LLO activity. Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multiomics we characterized protein, lipid, and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Using immunogold EM we detected LLO at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes during infection. Our findings demonstrate that L. monocytogenes uses EVs for toxin release and implicate these structures in mammalian cytotoxicity.


Asunto(s)
Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Hemólisis/efectos de los fármacos , Listeria monocytogenes/metabolismo , Listeriosis/microbiología , Macrófagos/metabolismo , Factores de Virulencia/metabolismo , Animales , Células Cultivadas , Vesículas Extracelulares/microbiología , Humanos , Listeria monocytogenes/patogenicidad , Células MCF-7 , Macrófagos/microbiología , Ratones , Ovinos
8.
Langmuir ; 36(14): 3970-3980, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32207953

RESUMEN

Styrene-maleic acid (SMA) copolymers have recently gained attention for their ability to facilitate the detergent-free solubilization of membrane protein complexes and their native boundary lipids into polymer-encapsulated, nanosized lipid particles, referred to as SMALPs. However, the interfacial interactions between SMA and lipids, which dictate the mechanism, efficiency, and selectivity of lipid and membrane protein extraction, are barely understood. Our recent finding has shown that SMA 1440, a chemical derivative of the SMA family with a functionalized butoxyethanol group, was most active in galactolipid-rich membranes, as opposed to phospholipid membranes. In the present work, we have performed X-ray reflectometry (XRR) and neutron reflectometry (NR) on the lipid monolayers at the liquid-air interface followed by the SMA copolymer adsorption. XRR and Langmuir Π-A isotherms captured the fluidifying effect of galactolipids, which allowed SMA copolymers to infiltrate easily into the lipid membranes. NR results revealed the detailed structural arrangement of SMA 1440 copolymers within the membranes and highlighted the partition of butoxyethanol group into the lipid tail region. This work allows us to propose a possible mechanism for the membrane solubilization by SMA.

9.
PLoS Genet ; 12(11): e1006443, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27875531

RESUMEN

The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor EB (TFEB), a master regulator of lysosomal and autophagy genes, which is negatively regulated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular models. Consistent with reduced mTOR activity and increased TFEB levels, loss of C9orf72 enhances autophagic flux, suggesting that C9orf72 is a negative regulator of autophagy. We identified a protein complex consisting of C9orf72 and SMCR8, both of which are homologous to DENN-like proteins. The depletion of C9orf72 or SMCR8 leads to significant down-regulation of each other's protein level. Loss of SMCR8 alters mTOR signaling and autophagy. These results demonstrate that the C9orf72-SMCR8 protein complex functions in the regulation of metabolism and provide evidence that loss of C9orf72 function may contribute to the pathogenesis of relevant diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas Portadoras/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Factores de Intercambio de Guanina Nucleótido/genética , Serina-Treonina Quinasas TOR/genética , Alelos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Proteína C9orf72 , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Humanos , Ratones , Fenotipo , Proteínas Quinasas S6 Ribosómicas 90-kDa/biosíntesis , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/biosíntesis
10.
Cell Mol Life Sci ; 73(4): 775-95, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26611876

RESUMEN

Mitochondria are an essential source of ATP for cellular function, but when damaged, mitochondria generate a plethora of stress signals, which lead to cellular dysfunction and eventually programmed cell death. Thus, a major component of maintaining cellular homeostasis is the recognition and removal of dysfunctional mitochondria through autophagy-mediated degradation, i.e., mitophagy. Mitophagy further constitutes a developmental program, and undergoes a high degree of crosstalk with apoptosis. Reduced mitochondrial quality control is linked to disease pathogenesis, suggesting the importance of process elucidation as a clinical target. Recent work has revealed multiple mitophagy programs that operate independently or undergo crosstalk, and require modulated autophagy receptor activities at outer membranes of mitochondria. Here, we review these mitophagy programs, focusing on pathway mechanisms which recognize and target mitochondria for sequestration by autophagosomes, as well as mechanisms controlling pathway activities. Furthermore, we provide an introduction to the currently available methods for detecting mitophagy.


Asunto(s)
Autofagia , Mitocondrias/metabolismo , Mitofagia , Mapas de Interacción de Proteínas , Transducción de Señal , Secuencia de Aminoácidos , Animales , Humanos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina/análisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/análisis , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Biol Chem ; 290(36): 22005-18, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26134559

RESUMEN

Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.


Asunto(s)
Caspasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Células Cultivadas , Citocromos c/metabolismo , Dinaminas , Embrión de Mamíferos/citología , Activación Enzimática , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Ratones Noqueados , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Permeabilidad/efectos de los fármacos , Transporte de Proteínas , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
12.
J Virol ; 89(15): 8026-41, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018155

RESUMEN

UNLABELLED: Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or them TOR inhibitor Torin1.We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased.We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV. IMPORTANCE: Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we used high-content, imaging-based flow cytometry to quantify autophagic flux and endolysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endolysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a proviral to an antiviral cellular process, which is counteracted by the virus.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Virus del Dengue/fisiología , Dengue/metabolismo , Dengue/fisiopatología , Fagosomas/metabolismo , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Dengue/genética , Dengue/virología , Virus del Dengue/genética , Humanos , Fagosomas/genética , Proteolisis , Proteína Sequestosoma-1
13.
BMC Cancer ; 16: 355, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27268034

RESUMEN

BACKGROUND: TFEB (transcription factor EB) regulates metabolic homeostasis through its activation of lysosomal biogenesis following its nuclear translocation. TFEB activity is inhibited by mTOR phosphorylation, which signals its cytoplasmic retention. To date, the temporal relationship between alterations to mTOR activity states and changes in TFEB subcellular localization and concentration has not been sufficiently addressed. METHODS: mTOR was activated by renewed addition of fully-supplemented medium, or inhibited by Torin1 or nutrient deprivation. Single-cell TFEB protein levels and subcellular localization in HeLa and MCF7 cells were measured over a time course of 15 hours by multispectral imaging cytometry. To extract single-cell level information on heterogeneous TFEB activity phenotypes, we developed a framework for identification of TFEB activity subpopulations. Through unsupervised clustering, cells were classified according to their TFEB nuclear concentration, which corresponded with downstream lysosomal responses. RESULTS: Bulk population results revealed that mTOR negatively regulates TFEB protein levels, concomitantly to the regulation of TFEB localization. Subpopulation analysis revealed maximal sensitivity of HeLa cells to mTOR activity stimulation, leading to inactivation of 100 % of the cell population within 0.5 hours, which contrasted with a lower sensitivity in MCF7 cells. Conversely, mTOR inhibition increased the fully active subpopulation only fractionally, and full activation of 100 % of the population required co-inhibition of mTOR and the proteasome. Importantly, mTOR inhibition activated TFEB for a limited duration of 1.5 hours, and thereafter the cell population was progressively re-inactivated, with distinct kinetics for Torin1 and nutrient deprivation treatments. CONCLUSION: TFEB protein levels and subcellular localization are under control of a short-term rheostat, which is highly responsive to negative regulation by mTOR, but under conditions of mTOR inhibition, restricts TFEB activation in a manner dependent on the proteasome. We further identify a long-term, mTOR-independent homeostatic control negatively regulating TFEB upon prolonged mTOR inhibition. These findings are of relevance for developing strategies to target TFEB activity in disease treatment. Moreover, our quantitative approach to decipher phenotype heterogeneity in imaging datasets is of general interest, as shifts between subpopulations provide a quantitative description of single cell behaviour, indicating novel regulatory behaviors and revealing differences between cell types.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Análisis de la Célula Individual/métodos , Serina-Treonina Quinasas TOR/metabolismo , Citometría de Flujo , Células HeLa , Homeostasis , Humanos , Células MCF-7 , Microscopía Fluorescente , Fosforilación , Transducción de Señal , Factores de Tiempo
14.
Proc Natl Acad Sci U S A ; 110(28): E2592-601, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23801752

RESUMEN

Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.


Asunto(s)
Autofagia/fisiología , Supervivencia Celular/fisiología , Histona Desacetilasas/fisiología , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Neuroblastoma/enzimología , Neuroblastoma/patología , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Int J Cancer ; 136(1): 65-73, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24828787

RESUMEN

Chronic lymphocytic leukemia (CLL) cells fail to enter apoptosis in vivo as opposed to their non-malignant B-lymphocyte counterparts. The ability of CLL cells to escape apoptosis is highly dependent on their microenvironment. Compared to non-malignant B cells, CLL cells are more responsive to complex stimuli that can be reproduced in vitro by the addition of cytokines. To understand the molecular mechanism of the environment-dependent anti-apoptotic signaling circuitry of CLL cells, we quantified the effect of the SDF-1, BAFF, APRIL, anti-IgM, interleukin-4 (IL4) and secreted CD40L (sCD40L) on the survival of in vitro cultured CLL cells and found IL4 and sCD40L to be most efficient in rescuing CLL cells from apoptosis. In quantitative dose-response experiments using cell survival as readout, the binding affinity of IL4 to its receptor was similar between malignant and non-malignant cells. However, the downstream signaling in terms of the amount of STAT6 and its degree of phosphorylation was highly stimulated in CLL cells. In contrast, the response to sCD40L showed a loss of cooperative binding in CLL cells but displayed a largely increased ligand binding affinity. Although a high-throughput microscopy analysis did not reveal a significant difference in the spatial CD40 receptor organization, the downstream signaling showed an enhanced activation of the NF-kB pathway in the malignant cells. Thus, we propose that the anti-apoptotic phenotype of CLL involves a sensitized response for IL4 dependent STAT6 phosphorylation, and an activation of NF-kB signaling due to an increased affinity of sCD40L to its receptor.


Asunto(s)
Ligando de CD40/metabolismo , Supervivencia Celular , Interleucina-4/fisiología , FN-kappa B/metabolismo , Factor de Transcripción STAT6/metabolismo , Apoptosis , Linfocitos B/fisiología , Ligando de CD40/fisiología , Estudios de Casos y Controles , Humanos , Leucemia Linfocítica Crónica de Células B , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal
16.
Cell Commun Signal ; 13: 37, 2015 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-26253153

RESUMEN

BACKGROUND: Mitochondria are key regulators of apoptosis. In response to stress, BH3-only proteins activate pro-apoptotic Bcl2 family proteins Bax and Bak, which induce mitochondrial outer membrane permeabilization (MOMP). While the large-scale mitochondrial release of pro-apoptotic proteins activates caspase-dependent cell death, a limited release results in sub-lethal caspase activation which promotes tumorigenesis. Mitochondrial autophagy (mitophagy) targets dysfunctional mitochondria for degradation by lysosomes, and undergoes extensive crosstalk with apoptosis signaling, but its influence on apoptosis remains undetermined. The BH3-only protein Bnip3 integrates apoptosis and mitophagy signaling at different signaling domains. Bnip3 inhibits pro-survival Bcl2 members via its BH3 domain and activates mitophagy through its LC3 Interacting Region (LIR), which is responsible for binding to autophagosomes. Previously, we have shown that Bnip3-activated mitophagy prior to apoptosis induction can reduce mitochondrial activation of caspases, suggesting that a reduction to mitochondrial levels may be pro-survival. An outstanding question is whether organelle dynamics and/or recently discovered subcellular variations of protein levels responsible for both MOMP sensitivity and crosstalk between apoptosis and mitophagy can influence the cellular apoptosis decision event. To that end, here we undertook a systems biology analysis of mitophagy-apoptosis crosstalk at the level of cellular mitochondrial populations. RESULTS: Based on experimental findings, we developed a multi-scale, hybrid model with an individually adaptive mitochondrial population, whose actions are determined by protein levels, embedded in an agent-based model (ABM) for simulating subcellular dynamics and local feedback via reactive oxygen species signaling. Our model, supported by experimental evidence, identified an emergent regulatory structure within canonical apoptosis signaling. We show that the extent of mitophagy is determined by levels and spatial localization of autophagy capacity, and subcellular mitochondrial protein heterogeneities. Our model identifies mechanisms and conditions that alter the mitophagy decision within mitochondrial subpopulations to an extent sufficient to shape cellular outcome to apoptotic stimuli. CONCLUSION: Overall, our modeling approach provides means to suggest new experiments and implement findings at multiple scales in order to understand how network topologies and subcellular heterogeneities can influence signaling events at individual organelle level, and hence, determine the emergence of heterogeneity in cellular decisions due the actions of the collective intra-cellular population.


Asunto(s)
Apoptosis , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Proteínas Proto-Oncogénicas/metabolismo , Animales , Línea Celular , Citocromos c/metabolismo , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
17.
PLoS Comput Biol ; 10(9): e1003795, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188314

RESUMEN

The majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models require that the pathway topology remains constant over the entire observation period. However, changes in topology might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach based on Fuzzy Logic (FL) that predicts changes in network architecture over time. This adaptive modeling approach was used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Melanoma/metabolismo , Modelos Biológicos , Biología Computacional , Lógica Difusa , Humanos , Fosforilación
18.
PLoS Genet ; 8(3): e1002582, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438831

RESUMEN

Apoptosis is essential to prevent oncogenic transformation by triggering self-destruction of harmful cells, including those unable to differentiate. However, the mechanisms linking impaired cell differentiation and apoptosis during development and disease are not well understood. Here we report that the Drosophila transcription factor Cut coordinately controls differentiation and repression of apoptosis via direct regulation of the pro-apoptotic gene reaper. We also demonstrate that this regulatory circuit acts in diverse cell lineages to remove uncommitted precursor cells in status nascendi and thereby interferes with their potential to develop into cancer cells. Consistent with the role of Cut homologues in controlling cell death in vertebrates, we find repression of apoptosis regulators by Cux1 in human cancer cells. Finally, we present evidence that suggests that other lineage-restricted specification factors employ a similar mechanism to put the brakes on the oncogenic process.


Asunto(s)
Apoptosis , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Linaje de la Célula , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Supresores de Tumor , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
19.
J Biol Chem ; 288(2): 1099-113, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23209295

RESUMEN

BH3-only proteins integrate apoptosis and autophagy pathways, yet regulation and functional consequences of pathway cross-talk are not fully resolved. The BH3-only protein Bnip3 is an autophagy receptor that signals autophagic degradation of mitochondria (mitophagy) via interaction of its LC3-interacting region (LIR) with Atg8 proteins. Here we report that phosphorylation of serine residues 17 and 24 flanking the Bnip3 LIR promotes binding to specific Atg8 members LC3B and GATE-16. Using quantitative multispectral image-based flow cytometry, we demonstrate that enhancing Bnip3-Atg8 interactions via phosphorylation-mimicked LIR mutations increased mitochondrial sequestration, lysosomal delivery, and degradation. Importantly, mitochondria were targeted by mitophagy prior to cytochrome c release, resulting in reduced cellular cytochrome c release capacity. Intriguingly, pro-survival Bcl-x(L) positively regulated Bnip3 binding to LC3B, sequestration, and mitochondrial autophagy, further supporting an anti-apoptotic role for Bnip3-induced mitophagy. The ensemble of these results demonstrates that the phosphorylation state of the Bnip3 LIR signals either the induction of apoptosis or pro-survival mitophagy.


Asunto(s)
Apoptosis , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitofagia , Proteínas Proto-Oncogénicas/metabolismo , Serina/metabolismo , Secuencia de Bases , Línea Celular , Supervivencia Celular , Cartilla de ADN , Citometría de Flujo , Humanos , Inmunoprecipitación , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Microscopía Fluorescente , Fosforilación , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/fisiología
20.
Cell Commun Signal ; 12: 56, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25214434

RESUMEN

BACKGROUND: Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. RESULTS: We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. CONCLUSION: Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.


Asunto(s)
Autofagia , Modelos Biológicos , Simulación por Computador , Células HeLa , Humanos , Lisosomas/metabolismo , Células MCF-7 , Macrólidos/farmacología , Fagosomas/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA