Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Biomater ; 170: 318-329, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598790

RESUMEN

Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is applied to treat unresectable peritoneal metastasis (PM), an advanced, end-stage disease with a poor prognosis. Electrostatic precipitation of the aerosol (ePIPAC) is aimed at improving the intraperitoneal (IP) drug distribution and tumor penetration. Also, the combination of nanoparticles (NPs) as drug delivery vehicles and IP aerosolization as administration method has been proposed as a promising tool to treat PM. There is currently limited knowledge on how electrostatic precipitation (ePIPAC) and high pressure nebulization (PIPAC) affects the performance of electrostatically formed complexes. Therefore, the stability, in vitro activity and ex vivo distribution and tissue penetration of negatively charged cisPt-pArg-HA NPs and positively charged siRNA-RNAiMAX NPs was evaluated following PIPAC and ePIPAC. Additionally, a multidirectional Medspray® nozzle was developed and compared with the currently used Capnopen® nozzle. For both NP types, PIPAC and ePIPAC did not negatively influence the in vitro activity, although limited aggregation of siRNA-RNAiMAX NPs was observed following nebulization with the Capnopen®. Importantly, ePIPAC was linked to a more uniform distribution and higher tissue penetration of the NPs aerosolized by both nozzles, independent on the NPs charge. Finally, compared to the Capnopen®, an increased NP deposition was observed at the top of the ex vivo model following aerosolization with the Medspray® nozzle, which indicates that this device possesses great potential for IP drug delivery purposes. STATEMENT OF SIGNIFICANCE: Aerosolized drug delivery in the peritoneal cavity holds great promise to treat peritoneal cancer. In addition, electrostatic precipitation of the aerosol to the peritoneal tissue is aimed at improving the drug distribution and tumor penetration. The combination of nanoparticles (NPs), which are nano-sized drug delivery vehicles, and aerosolization has been proposed as a promising tool to treat peritoneal cancer. However, there is currently limited knowledge on how electrostatic precipitation and aerosolization affect the performance of electrostatically formed NPs. Therefore, the stability, activity, distribution and penetration of negatively and positively charged NPs was evaluated after aerosolization and electrostatic precipitation. Additionally, to further optimize the local drug distribution, a multidirectional spray nozzle was developed and compared with the currently used nozzle.

2.
J Control Release ; 362: 138-150, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37619864

RESUMEN

Postoperative peritoneal adhesions occur in the majority of patients undergoing intra-abdominal surgery and are one of the leading causes of hospital re-admission. There is an unmet clinical need for effective anti-adhesive biomaterials, which can be applied evenly across the damaged tissues. We examined three different responsive hydrogel types, i.e. a thermosensitive PLGA-PEG-PLGA, a pH responsive UPy-PEG and a shear-thinning hexapeptide for this purpose. More specifically, their potential to be homogeneously distributed in the peritoneal cavity by high pressure nebulization and prevent peritoneal adhesions was evaluated. Solutions of each polymer type could be successfully nebulized while retaining their responsive gelation behavior in vitro and in vivo. Furthermore, none of the polymers caused in vitro toxicity on SKOV3-IP2 cells. Following intraperitoneal administration, both the PLGA-PEG-PLGA and the hexapeptide hydrogels resulted in local inflammation and fibrosis and failed in preventing peritoneal adhesions 7 days after adhesion induction. In contrast, the pH sensitive UPy-PEG formulation was well tolerated and could significantly reduce the formation of peritoneal adhesions, even outperforming the commercially available Hyalobarrier® as positive control. To conclude, local nebulization of the bioresponsive UPy-PEG hydrogel can be considered as a promising approach to prevent postsurgical peritoneal adhesions.

3.
ACS Appl Mater Interfaces ; 15(42): 49022-49034, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819736

RESUMEN

Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.


Asunto(s)
Dióxido de Carbono , Neoplasias Peritoneales , Animales , Humanos , Neoplasias Peritoneales/tratamiento farmacológico , Hidrogeles/química , Polímeros/química , Concentración de Iones de Hidrógeno
4.
Eur J Pharm Biopharm ; 169: 134-143, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634467

RESUMEN

Peritoneal metastasis is an advanced cancer type which can be treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Here, chemotherapeutics are nebulized under high pressure in the intraperitoneal (IP) cavity to obtain a better biodistribution and tumor penetration. To prevent the fast leakage of chemotherapeutics from the IP cavity, however, nebulization of controlled release formulations is of interest. In this study, the potential of the thermosensitive hydrogel Pluronic F127 to be applied by high pressure nebulization is evaluated. Therefore, aerosol formation is experimentally examined by laser diffraction and theoretically simulated by computational fluid dynamics (CFD) modelling. Furthermore, Pluronic F127 hydrogels are subjected to rheological characterization after which the release of fluorescent model nanoparticles from the hydrogels is determined. A delicate equilibrium is observed between controlled release properties and suitability for aerosolization, where denser hydrogels (20% and 25% w/v Pluronic F127) are able to sustain nanoparticle release up to 30 h, but cannot effectively be nebulized and vice versa. This is demonstrated by a growing aerosol droplet size and exponentially decreasing aerosol cone angle when Pluronic F127 concentration and viscosity increase. Novel nozzle designs or alternative controlled release formulations could move intraperitoneal drug delivery by high pressure nebulization forward.


Asunto(s)
Partículas y Gotitas de Aerosol/farmacología , Antineoplásicos/farmacología , Absorción Peritoneal/efectos de los fármacos , Neoplasias Peritoneales , Poloxámero/farmacología , Preparaciones de Acción Retardada/farmacología , Composición de Medicamentos/métodos , Excipientes/farmacología , Humanos , Hidrodinámica , Hidrogeles/farmacología , Nanopartículas/uso terapéutico , Nebulizadores y Vaporizadores , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Distribución Tisular
5.
Expert Opin Drug Deliv ; 17(4): 511-522, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32142389

RESUMEN

Introduction: The rationale for intraperitoneal (IP) drug delivery for patients with peritoneal metastases (PM) is based on the pharmacokinetic advantage resulting from the peritoneal-plasma barrier, and on the potential to adequately treat small, poorly vascularized PM. Despite a history of more than three decades, many aspects of IP drug delivery remain poorly studied.Areas covered: We outline the anatomy and physiology of the peritoneal cavity, including the pharmacokinetics of IP drug delivery. We discuss transport mechanisms governing tissue penetration of IP chemotherapy, and how these are affected by the biomechanical properties of the tumor stroma. We provide an overview of the current clinical evidence on IP chemotherapy in ovarian, colorectal, and gastric cancer. We discuss the current limitations of IP drug delivery and propose several potential areas of progress.Expert opinion: The potential of IP drug delivery is hampered by off-label use of drugs developed for systemic therapy. The efficacy of IP chemotherapy for PM depends on cancer type, disease extent, and mode of drug delivery. Results from ongoing randomized trials will allow to better delineate the potential of IP chemotherapy. Promising approaches include IP aerosol therapy, prolonged delivery platforms such as gels or biomaterials, and the use of nanomedicine.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Peritoneales/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Sistemas de Liberación de Medicamentos , Testimonio de Experto , Humanos , Inyecciones Intraperitoneales , Neoplasias Peritoneales/secundario , Peritoneo/metabolismo , Distribución Tisular
6.
Adv Drug Deliv Rev ; 160: 105-114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132169

RESUMEN

Current therapies for patients with peritoneal metastases (PM) are only moderately effective. Recently, a novel locoregional treatment method for PM was introduced, consisting of a combination of laparoscopy with intraperitoneal (IP) delivery of anticancer agents as an aerosol. This 'pressurized intraperitoneal aerosol chemotherapy' (PIPAC) may enhance tissue drug penetration by the elevated IP pressure during CO2 capnoperitoneum. Also, repeated PIPAC cycles allow to accurately stage peritoneal disease and verify histological response to treatment. This review provides an overview of the rationale, indications, and currently used technology for therapeutic IP nebulization, and discusses the basic mechanisms governing aerosol particle transport and peritoneal deposition. We discuss early clinical results in patients with advanced, irresectable PM and highlight the potential of electrostatic aerosol precipitation. Finally, we discuss promising novel approaches, including nebulization of nanoparticles and prolonged release formulations.


Asunto(s)
Aerosoles/química , Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/secundario , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Preparaciones de Acción Retardada , Humanos , Nanopartículas , Metástasis de la Neoplasia , Tamaño de la Partícula , Electricidad Estática , Humectabilidad
7.
Adv Healthc Mater ; 9(16): e2000655, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32548967

RESUMEN

There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab-PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab-PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab-PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab-PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.


Asunto(s)
Nanopartículas , Peritoneo , Aerosoles , Animales , Sistemas de Liberación de Medicamentos , Humanos , Ratas , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA