Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272280

RESUMEN

The posteromedial cortex (PMC) is known to be a core node of the default mode network. Given its anatomical location and blood supply pattern, the effects of targeted disruption of this part of the brain are largely unknown. Here, we report a rare case of a patient (S19_137) with confirmed seizures originating within the PMC. Intracranial recordings confirmed the onset of seizures in the right dorsal posterior cingulate cortex, adjacent to the marginal sulcus, likely corresponding to Brodmann area 31. Upon the onset of seizures, the patient reported a reproducible sense of self-dissociation-a condition he described as a distorted awareness of the position of his body in space and feeling as if he had temporarily become an outside observer to his own thoughts, his "me" having become a separate entity that was listening to different parts of his brain speak to each other. Importantly, 50-Hz electrical stimulation of the seizure zone and a homotopical region within the contralateral PMC induced a subjectively similar state, reproducibly. We supplement our clinical findings with the definition of the patient's network anatomy at sites of interest using cortico-cortical-evoked potentials, experimental and resting-state electrophysiological connectivity, and individual-level functional imaging. This rare case of patient S19_137 highlights the potential causal importance of the PMC for integrating self-referential information and provides clues for future mechanistic studies of self-dissociation in neuropsychiatric populations.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia/psicología , Convulsiones/psicología , Adulto , Concienciación , Corteza Cerebral/diagnóstico por imagen , Estimulación Eléctrica , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología , Adulto Joven
2.
J Cogn Neurosci ; 35(2): 200-225, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378901

RESUMEN

Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.


Asunto(s)
Mapeo Encefálico , Conectoma , Humanos , Individualidad , Lateralidad Funcional , Encéfalo/diagnóstico por imagen , Lóbulo Frontal , Imagen por Resonancia Magnética
3.
J Neurophysiol ; 125(2): 358-384, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427596

RESUMEN

Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.


Asunto(s)
Cerebelo/fisiología , Conectoma , Femenino , Humanos , Imagen por Resonancia Magnética , Adulto Joven
4.
J Neurophysiol ; 124(5): 1415-1448, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32965153

RESUMEN

Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex.NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.


Asunto(s)
Corteza Cerebral/fisiología , Lateralidad Funcional/fisiología , Lenguaje , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Adulto Joven
5.
J Neurophysiol ; 123(3): 1144-1179, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32049593

RESUMEN

Association cortex is organized into large-scale distributed networks. One such network, the default network (DN), is linked to diverse forms of internal mentation, opening debate about whether shared or distinct anatomy supports multiple forms of cognition. Using within-individual analysis procedures that preserve idiosyncratic anatomical details, we probed whether multiple tasks from two domains, episodic projection and theory of mind (ToM), rely on the same or distinct networks. In an initial experiment (6 subjects, each scanned 4 times), we found evidence that episodic projection and ToM tasks activate separate regions distributed throughout the cortex, with adjacent regions in parietal, temporal, prefrontal, and midline zones. These distinctions were predicted by the hypothesis that the DN comprises two parallel, interdigitated networks. One network, linked to parahippocampal cortex (PHC), is preferentially recruited during episodic projection, including both remembering and imagining the future. A second juxtaposed network, which includes the temporoparietal junction (TPJ), is differentially engaged during multiple forms of ToM. In two prospectively acquired independent experiments, we replicated and triplicated the dissociation (each with 6 subjects scanned 4 times). Furthermore, the dissociation was found in all zones when analyzed independently, including robustly in midline regions previously described as hubs. The TPJ-linked network is interwoven with the PHC-linked network across the cortex, making clear why it is difficult to fully resolve the two networks in group-averaged or lower-resolution data. These results refine our understanding of the functional-anatomical organization of association cortex and raise fundamental questions about how specialization might arise in parallel, juxtaposed association networks.NEW & NOTEWORTHY Two distributed, interdigitated networks exist within the bounds of the canonical default network. Here we used repeated scanning of individuals, across three independent samples, to provide evidence that tasks requiring episodic projection or theory of mind differentially recruit the two networks across multiple cortical zones. The two distributed networks thus appear to preferentially subserve distinct functions.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Red en Modo Predeterminado/fisiología , Memoria Episódica , Red Nerviosa/fisiología , Percepción Social , Teoría de la Mente/fisiología , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Humanos , Imaginación/fisiología , Imagen por Resonancia Magnética , Masculino , Recuerdo Mental/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto Joven
6.
J Neurophysiol ; 121(4): 1513-1534, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785825

RESUMEN

Examination of large-scale distributed networks within the individual reveals details of cortical network organization that are absent in group-averaged studies. One recent discovery is that a distributed transmodal network, often referred to as the "default network," comprises two closely interdigitated networks, only one of which is coupled to posterior parahippocampal cortex. Not all studies of individuals have identified the same networks, and questions remain about the degree to which the two networks are separate, particularly within regions hypothesized to be interconnected hubs. In this study we replicate the observation of network separation across analytical (seed-based connectivity and parcellation) and data projection (volume and surface) methods in two individuals each scanned 31 times. Additionally, three individuals were examined with high-resolution (7T; 1.35 mm) functional magnetic resonance imaging to gain further insight into the anatomical details. The two networks were identified with separate regions localized to adjacent portions of the cortical ribbon, sometimes inside the same sulcus. Midline regions previously implicated as hubs revealed near complete spatial separation of the two networks, displaying a complex spatial topography in the posterior cingulate and precuneus. The network coupled to parahippocampal cortex also revealed a separate region directly within the hippocampus, at or near the subiculum. These collective results support that the default network is composed of at least two spatially juxtaposed networks. Fine spatial details and juxtapositions of the two networks can be identified within individuals at high resolution, providing insight into the network organization of association cortex and placing further constraints on interpretation of group-averaged neuroimaging data. NEW & NOTEWORTHY Recent evidence has emerged that canonical large-scale networks such as the "default network" fractionate into parallel distributed networks when defined within individuals. This research uses high-resolution imaging to show that the networks possess juxtapositions sometimes evident inside the same sulcus and within regions that have been previously hypothesized to be network hubs. Distinct circumscribed regions of one network were also resolved in the hippocampal formation, at or near the parahippocampal cortex and subiculum.


Asunto(s)
Encéfalo/fisiología , Conectoma , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética
7.
Hum Brain Mapp ; 38(1): 255-270, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27571304

RESUMEN

A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Lóbulo Frontal/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Imagen de Difusión por Resonancia Magnética , Lóbulo Frontal/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Persona de Mediana Edad , Oxígeno/sangre , Estimulación Luminosa , Adulto Joven
8.
Hum Brain Mapp ; 38(1): 202-220, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600689

RESUMEN

Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Atención/fisiología , Encéfalo/diagnóstico por imagen , Simulación por Computador , Señales (Psicología) , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Actividad Motora/fisiología , Vías Nerviosas/diagnóstico por imagen , Oxígeno/sangre , Estimulación Luminosa , Percepción Espacial/fisiología , Estadísticas no Paramétricas , Factores de Tiempo
9.
Cereb Cortex ; 25(11): 4284-98, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25596592

RESUMEN

Remembering what a speaker said depends on attention. During conversational speech, the emphasis is on working memory, but listening to a lecture encourages episodic memory encoding. With simultaneous interference from background speech, the need for auditory vigilance increases. We recreated these context-dependent demands on auditory attention in 2 ways. The first was to require participants to attend to one speaker in either the absence or presence of a distracting background speaker. The second was to alter the task demand, requiring either an immediate or delayed recall of the content of the attended speech. Across 2 fMRI studies, common activated regions associated with segregating attended from unattended speech were the right anterior insula and adjacent frontal operculum (aI/FOp), the left planum temporale, and the precuneus. In contrast, activity in a ventral right frontoparietal system was dependent on both the task demand and the presence of a competing speaker. Additional multivariate analyses identified other domain-general frontoparietal systems, where activity increased during attentive listening but was modulated little by the need for speech stream segregation in the presence of 2 speakers. These results make predictions about impairments in attentive listening in different communicative contexts following focal or diffuse brain pathology.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Percepción del Habla/fisiología , Habla/fisiología , Estimulación Acústica , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Encéfalo/irrigación sanguínea , Conducta de Elección/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Análisis de Componente Principal , Adulto Joven
10.
J Neurosci ; 34(33): 10798-807, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25122883

RESUMEN

Interactions between the Salience Network (SN) and the Default Mode Network (DMN) are thought to be important for cognitive control. However, evidence for a causal relationship between the networks is limited. Previously, we have reported that traumatic damage to white matter tracts within the SN predicts abnormal DMN function. Here we investigate the effect of this damage on network interactions that accompany changing motor control. We initially used fMRI of the Stop Signal Task to study response inhibition in humans. In healthy subjects, functional connectivity (FC) between the right anterior insula (rAI), a key node of the SN, and the DMN transiently increased during stopping. This change in FC was not seen in a group of traumatic brain injury (TBI) patients with impaired cognitive control. Furthermore, the amount of SN tract damage negatively correlated with FC between the networks. We confirmed these findings in a second group of TBI patients. Here, switching rather than inhibiting a motor response: (1) was accompanied by a similar increase in network FC in healthy controls; (2) was not seen in TBI patients; and (3) tract damage after TBI again correlated with FC breakdown. This shows that coupling between the rAI and DMN increases with cognitive control and that damage within the SN impairs this dynamic network interaction. This work provides compelling evidence for a model of cognitive control where the SN is involved in the attentional capture of salient external stimuli and signals the DMN to reduce its activity when attention is externally focused.


Asunto(s)
Atención/fisiología , Lesiones Encefálicas/psicología , Trastornos del Conocimiento/psicología , Cognición/fisiología , Función Ejecutiva/fisiología , Red Nerviosa/lesiones , Adolescente , Adulto , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/fisiopatología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/fisiopatología , Femenino , Humanos , Inhibición Psicológica , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Neuroimagen , Pruebas Neuropsicológicas , Adulto Joven
11.
J Neurosci ; 33(35): 14031-9, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23986239

RESUMEN

Intrinsic connectivity networks (ICNs), such as the default mode, frontoparietal control, and salience networks, provide a useful large-scale description of the functional architecture of the brain. Although ICNs are functionally specialized, the information that they process needs to be integrated for coherent cognition, perception, and behavior. A region capable of performing this integration might be expected to contain traces, or "echoes," of the neural signals from multiple ICNs. Here, using fMRI in humans, we show the existence of specific "transmodal" regions containing echoes of multiple ICNs. These regions include core nodes of the default mode network, as well as multimodal association regions of the temporoparietal and temporo-occipito-parietal junction, right middle frontal gyrus, and dorsal anterior cingulate cortex. In contrast, "unimodal" regions such as the primary sensory and motor cortices show a much more singular pattern of activity, containing traces of few or even single ICNs. The presence of ICN echoes might explain how transmodal regions are involved in multiple different cognitive states. Our results suggest that these transmodal regions have a particular local spatial organization containing topographic maps that relate to multiple ICNs. This makes transmodal regions uniquely placed to be able to mediate the cross talk between the brain's functional networks through local modulation of adjacent regions that communicate with different ICNs.


Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Adulto , Mapeo Encefálico , Cognición/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106046

RESUMEN

Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.

13.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328109

RESUMEN

Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population-rather than individual-based inferences due to limited within-individual sampling. Here, three densely-sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely-sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously-unrecognized inter-individual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.

14.
Cortex ; 178: 223-234, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39024940

RESUMEN

We identified a syndrome characterized by a relatively isolated progressive impairment of reading words that the patient was able to understand and repeat but without other components of speech apraxia. This cluster of symptoms fits a new syndrome designated Progressive Verbal Apraxia of Reading. A right-handed man (AB) came with a 2.5-year history of increasing difficulties in reading aloud. He was evaluated twice, 2 years apart, using multimodal neuroimaging techniques and quantitative neurolinguistic assessment. In the laboratory, reading difficulties arose in the context of intact visual and auditory word recognition as well as intact ability to understand and repeat words he was unable to read aloud. The unique feature was the absence of dysarthria or speech apraxia in tasks other than reading. Initial imaging did not reveal statistically significant atrophy. Structural magnetic resonance and FDG-PET imaging at the second assessment revealed atrophy and hypometabolism in the right posterior cerebellum, in areas shown to be part of his language network by task-based functional neuroimaging at initial assessment. This syndromic cluster can be designated Progressive Verbal Apraxia of Reading, an entity that has not been reported previously to the best of our knowledge. We hypothesize a selective disconnection of the visual word recognition system from the otherwise intact articulatory apparatus, a disconnection that appears to reflect the disruption of multisynaptic cerebello-cortical circuits.

15.
Neuroimage ; 74: 77-86, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23435206

RESUMEN

A central question for cognitive neuroscience is whether there is a single neural system controlling the allocation of attention. A dorsal frontoparietal network of brain regions is often proposed as a mediator of top-down attention to all sensory inputs. We used functional magnetic resonance imaging in humans to show that the cortical networks supporting top-down attention are in fact modality-specific, with distinct superior fronto-parietal and fronto-temporal networks for visuospatial and non-spatial auditory attention respectively. In contrast, parts of the right middle and inferior frontal gyri showed a common response to attentional control regardless of modality, providing evidence that the amodal component of attention is restricted to the anterior cortex.


Asunto(s)
Atención/fisiología , Mapeo Encefálico , Encéfalo/fisiología , Vías Nerviosas/fisiología , Estimulación Acústica , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Percepción Espacial/fisiología , Adulto Joven
16.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106130

RESUMEN

The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.

17.
Neurosci Biobehav Rev ; 152: 105259, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268180

RESUMEN

A main goal in translational neuroscience is to identify neural correlates of psychopathology ("biomarkers") that can be used to facilitate diagnosis, prognosis, and treatment. This goal has led to substantial research into how psychopathology symptoms relate to large-scale brain systems. However, these efforts have not yet resulted in practical biomarkers used in clinical practice. One reason for this underwhelming progress may be that many study designs focus on increasing sample size instead of collecting additional data within each individual. This focus limits the reliability and predictive validity of brain and behavioral measures in any one person. As biomarkers exist at the level of individuals, an increased focus on validating them within individuals is warranted. We argue that personalized models, estimated from extensive data collection within individuals, can address these concerns. We review evidence from two, thus far separate, lines of research on personalized models of (1) psychopathology symptoms and (2) fMRI measures of brain networks. We close by proposing approaches uniting personalized models across both domains to improve biomarker research.


Asunto(s)
Encéfalo , Psiquiatría , Humanos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Biomarcadores
18.
Nat Ment Health ; 1(5): 346-360, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37982031

RESUMEN

Repetitive transcranial magnetic stimulation (TMS), when applied to the dorsolateral prefrontal cortex (dlPFC), treats depression. Therapeutic effects are hypothesized to arise from propagation of local dlPFC stimulation effects across distributed networks; however, the mechanisms of this remain unresolved. dlPFC contains representations of different networks. As such, dlPFC TMS may exert different effects depending on the network being stimulated. Here, to test this, we applied high-frequency TMS to two nearby dlPFC targets functionally embedded in distinct anti-correlated networks-the default and salience networks- in the same individuals in separate sessions. Local and distributed TMS effects were measured with combined 18fluorodeoxyglucose positron emission tomography and functional magnetic resonance imaging. Identical TMS patterns caused opposing effects on local glucose metabolism: metabolism increased at the salience target following salience TMS but decreased at the default target following default TMS. At the distributed level, both conditions increased functional connectivity between the default and salience networks, with this effect being dramatically larger following default TMS. Metabolic and haemodynamic effects were also linked: across subjects, the magnitude of local metabolic changes correlated with the degree of functional connectivity changes. These results suggest that TMS effects upon dlPFC are network specific. They also invoke putative antidepressant mechanisms of TMS: network de-coupling.

19.
Nat Commun ; 14(1): 5656, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704600

RESUMEN

Recent theories of cortical organisation suggest features of function emerge from the spatial arrangement of brain regions. For example, association cortex is located furthest from systems involved in action and perception. Association cortex is also 'interdigitated' with adjacent regions having different patterns of functional connectivity. It is assumed that topographic properties, such as distance between regions, constrains their functions, however, we lack a formal description of how this occurs. Here we use variograms, a quantification of spatial autocorrelation, to profile how function changes with the distance between cortical regions. We find function changes with distance more gradually within sensory-motor cortex than association cortex. Importantly, systems within the same type of cortex (e.g., fronto-parietal and default mode networks) have similar profiles. Primary and association cortex, therefore, are differentiated by how function changes over space, emphasising the value of topographical features of a region when estimating its contribution to cognition and behaviour.


Asunto(s)
Cognición , Corteza Sensoriomotora , Análisis Espacial
20.
Neuroradiology ; 54(5): 507-16, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22006424

RESUMEN

INTRODUCTION: Our aims were to (1) assess the corticospinal tracts (CSTs) in infants with focal injury and healthy term controls using probabilistic tractography and (2) to correlate the conventional magnetic resonance imaging (MRI) and tractography findings in infants with focal injury with their later motor function. METHODS: We studied 20 infants with focal lesions and 23 controls using MRI and diffusion tensor imaging. Tract volume, fractional anisotropy (FA), apparent diffusion coefficient (ADC) values, axial diffusivity and radial diffusivity (RD) of the CSTs were determined. Asymmetry indices (AIs) were calculated by comparing ipsilateral to contralateral CSTs. Motor outcome was assessed using a standardized neurological examination. RESULTS: Conventional MRI was able to predict normal motor development (n = 9) or hemiplegia (n = 6). In children who developed a mild motor asymmetry (n = 5), conventional MRI predicted a hemiplegia in two and normal motor development in three infants. The AIs for tract volume, FA, ADC and RD showed a significant difference between controls and infants who developed a hemiplegia, and RD also showed a significant difference in AI between controls and infants who developed a mild asymmetry. CONCLUSION: Conventional MRI was able to predict subsequent normal motor development or hemiplegia following focal injury in newborn infants. Measures of RD obtained from diffusion tractography may offer additional information for predicting a subsequent asymmetry in motor function.


Asunto(s)
Infarto Encefálico/complicaciones , Isquemia Encefálica/complicaciones , Imagen de Difusión Tensora/métodos , Hemiplejía/etiología , Hemiplejía/fisiopatología , Destreza Motora/fisiología , Tractos Piramidales/lesiones , Accidente Cerebrovascular/complicaciones , Anisotropía , Estudios de Casos y Controles , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Lactante , Masculino , Examen Neurológico , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA