Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Resist Updat ; 48: 100672, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31830738

RESUMEN

Antibiotic resistance could accelerate humanity towards an already fast-approaching post-antibiotic era, where disinfectants and effective biosecurity measures will be critically important to control microbial diseases. Disinfectant resistance has the potential to change our way of life from compromising food security to threatening our medical health systems. Resistance to antimicrobial agents occurs through either intrinsic or acquired resistance mechanisms. Acquired resistance occurs through the efficient transfer of mobile genetic elements, which can carry single, or multiple resistance determinants. Drug resistance genes may form part of integrons, transposons and insertions sequences which are capable of intracellular transfer onto plasmids or gene cassettes. Thereafter, resistance plasmids and gene cassettes mobilize by self-transmission between bacteria, increasing the prevalence of drug resistance determinants in a bacterial population. An accumulation of drug resistance genes through these mechanisms gives rise to multidrug resistant (MDR) bacteria. The study of this mobility is integral to safeguard current antibiotics, disinfectants and other antimicrobials. Literature evidence, however, indicates that knowledge regarding disinfectant resistance is severly limited. Genome engineering such as the CRISPR-Cas system, has identified disinfectant resistance genes, and reversed resistance altogether in certain prokaryotes. Demonstrating that these techniques could prove invaluable in the combat against disinfectant resistance by uncovering the secrets of MDR bacteria.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/genética , Desinfectantes/farmacología , Desinfectantes/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sistemas CRISPR-Cas/genética , Humanos
2.
Mol Syst Biol ; 14(3): e7435, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581148

RESUMEN

Transcriptional changes occur presymptomatically and throughout Huntington's disease (HD), motivating the study of transcriptional regulatory networks (TRNs) in HD We reconstructed a genome-scale model for the target genes of 718 transcription factors (TFs) in the mouse striatum by integrating a model of genomic binding sites with transcriptome profiling of striatal tissue from HD mouse models. We identified 48 differentially expressed TF-target gene modules associated with age- and CAG repeat length-dependent gene expression changes in Htt CAG knock-in mouse striatum and replicated many of these associations in independent transcriptomic and proteomic datasets. Thirteen of 48 of these predicted TF-target gene modules were also differentially expressed in striatal tissue from human disease. We experimentally validated a specific model prediction that SMAD3 regulates HD-related gene expression changes using chromatin immunoprecipitation and deep sequencing (ChIP-seq) of mouse striatum. We found CAG repeat length-dependent changes in the genomic occupancy of SMAD3 and confirmed our model's prediction that many SMAD3 target genes are downregulated early in HD.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Enfermedad de Huntington/genética , Proteína smad3/genética , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Mapas de Interacción de Proteínas , Proteómica , Proteína smad3/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Cytokine ; 123: 154783, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336263

RESUMEN

Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Quimiocina CXCL12/metabolismo , Músculos/metabolismo , Transducción de Señal , Huesos/patología , Humanos , Músculos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Receptores CXCR4/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Células Madre/metabolismo , Células Madre/patología
5.
Avian Pathol ; 46(3): 272-277, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27866411

RESUMEN

Infectious coryza, an upper respiratory tract disease in chickens, caused by Avibacterium paragallinarum, leads to huge economic losses. The disease is controlled through vaccination; but vaccination efficacy is dependent on correct identification of the infecting serovar, as limited cross-protection is reported amongst some serovars. Current identification methods include the heamagglutination inhibition test, which is demanding and could be subjective. To overcome this, molecular typing methods proposed are the Multiplex polymerase chain reaction (PCR) and Restriction Fragment Length Polymorphism-PCR, but low reproducibility is reported. Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR has been suggested for molecular groupings of various bacterial species. This study focuses on evaluating the ERIC-PCR as a probable method to differentiate between different Av. paragallinarum serovars by grouping with reference isolates, based on clonal relations. The ERIC-PCR was performed on 12 reference isolates and 41 field isolates originating from South Africa and South America. The data indicate that the ERIC-PCR is not ideal for the differentiation or for molecular typing of Av. paragallinarum serovars, as no correlation is drawn upon comparison of banding patterns of field isolates and reference strains. However, the results do indicate isolates from the same origin sharing unique banding patterns, indicating potential clonal relationship; but when compared to the reference isolates dominant in the specific area, no correlation could be drawn. Furthermore, although the ERIC-PCR serves a purpose in epidemiological studies, it has proved to have little application in differentiating amongst serovars of Av. paragallinarum and to group untyped field strains with known reference strains.


Asunto(s)
Pollos/microbiología , Enterobacteriaceae/genética , Haemophilus paragallinarum/genética , Enfermedades de las Aves de Corral/microbiología , Animales , ADN Intergénico/genética , Enterobacteriaceae/inmunología , Enterobacteriaceae/aislamiento & purificación , Haemophilus paragallinarum/inmunología , Haemophilus paragallinarum/aislamiento & purificación , Tipificación Molecular/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Polimorfismo de Longitud del Fragmento de Restricción , Enfermedades de las Aves de Corral/diagnóstico , Secuencias Repetitivas de Ácidos Nucleicos/genética , Reproducibilidad de los Resultados , Serogrupo , Especificidad de la Especie
6.
Adv Exp Med Biol ; 808: 1-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24595606

RESUMEN

Control of bacterial diseases has, for many years, been dependent on the use of antibiotics. Due to the high levels of efficacy of antibiotics in the past other disease control options have, to a large extent, been neglected. Mankind is now facing an increasing problem with antibiotic resistance. In an effort to retain some antibiotics for human use, there are moves afoot to limit or even ban the use of antibiotics in animal production. The use of antibiotics as growth promoters have been banned in the European Union and the USA. The potential ban on the use of antibiotics to treat diseases in production animals creates a dilemma for man-suffer significant problem with bacterial infection or suffer from a severe shortage of food! There are other options for the control of bacterial diseases. These include vaccine development, bacteriophage therapy, and improved biosecurity. Vaccine development against bacterial pathogens, particularly opportunistic pathogens, is often very challenging, as in many cases the molecular basis of the virulence is not always clearly understood. This is particularly true for Escherichia coli. Biosecurity (disinfection) has been a highly neglected area in disease control. With the ever-increasing problems with antibiotic resistance-the focus should return to improvements in biosecurity. As with antibiotics, bacteria also have mechanisms for resistance to disinfectants. To ensure that we do not replace one set of problems (increasing antibiotic resistance) with another (increasing resistance to disinfectants) we need to fully understand the modes of action of disinfectants and how the bacteria develop resistance to these disinfectants. Molecular studies have been undertaken to relate the presence of QAC resistance genes in bacteria to their levels of sensitivity to different generations of QAC-based products. The mode of action of QAC on bacteria has been studied using NanoSAM technology, where it was revealed that the QAC causes disruption of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine.


Asunto(s)
Desinfectantes/farmacología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Vacunas Bacterianas , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Desinfección , Farmacorresistencia Microbiana , Escherichia coli/ultraestructura , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Humanos , Microscopía Electrónica de Rastreo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/ultraestructura
7.
Adv Exp Med Biol ; 807: 97-110, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24619620

RESUMEN

The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed.


Asunto(s)
Infecciones Bacterianas/terapia , Bacteriófagos , Animales , Bacteriófagos/aislamiento & purificación , Farmacorresistencia Bacteriana , Humanos , Lisogenia
8.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39054288

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG tract in the huntingtin (HTT) gene, leading to toxic gains of function. HTT-lowering treatments are in clinical trials, but the risks imposed are unclear. Recent studies have reported on the consequences of widespread HTT loss in mice, where one group described early HTT loss leading to fatal pancreatitis, but later loss as benign. Another group reported no pancreatitis but found widespread neurological phenotypes including subcortical calcification. To better understand the liabilities of widespread HTT loss, we knocked out Htt with two separate tamoxifen-inducible Cre lines. We find that loss of HTT at 2 mo of age leads to progressive tremors and severe subcortical calcification at examination at 14 mo of age but does not result in acute pancreatitis or histological changes in the pancreas. We, in addition, report that HTT loss is followed by sustained induction of circulating neurofilament light chain. These results confirm that global loss of HTT in mice is associated with pronounced risks, including progressive subcortical calcification and neurodegeneration.


Asunto(s)
Modelos Animales de Enfermedad , Proteína Huntingtina , Enfermedad de Huntington , Ratones Noqueados , Páncreas , Animales , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones , Páncreas/patología , Páncreas/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Masculino , Calcinosis/genética , Calcinosis/patología , Fenotipo , Femenino
9.
Microorganisms ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838480

RESUMEN

Molecular insights into the mechanisms of resistance to disinfectants are severely limited, together with the roles of various mobile genetic elements. Genomic islands are a well-characterised molecular resistance element in antibiotic resistance, but it is unknown whether genomic islands play a role in disinfectant resistance. Through whole-genome sequencing and the bioinformatic analysis of Serratia sp. HRI, an isolate with high disinfectant resistance capabilities, nine resistance islands were predicted and annotated within the genome. Resistance genes active against several antimicrobials were annotated in these islands, most of which are multidrug efflux pumps belonging to the MFS, ABC and DMT efflux families. Antibiotic resistance islands containing genes encoding for multidrug resistance proteins ErmB (macrolide and erythromycin resistance) and biclomycin were also found. A metal fitness island harbouring 13 resistance and response genes to copper, silver, lead, cadmium, zinc, and mercury was identified. In the search for disinfectant resistance islands, two genomic islands were identified to harbour smr genes, notorious for conferring disinfectant resistance. This suggests that genomic islands are capable of conferring disinfectant resistance, a phenomenon that has not yet been observed in the study of biocide resistance and tolerance.

10.
Res Microbiol ; : 104151, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37952705

RESUMEN

The COVID-19 pandemic has highlighted our reliance on biocides, the increasing prevalence of resistance to biocides is a risk to public health. Bacterial exposure to the biocide, benzalkonium chloride (BAC), resulted in a unique transcriptomic profile, characterised by both a short and long-term response. Differential gene expression was observed in four main areas: motility, membrane composition, proteostasis, and the stress response. A metabolism shift to protect the proteome and the stress response were prioritised suggesting these are main resistance mechanisms. Whereas "well-established" mechanisms, such as biofilm formation, were not found to be differentially expressed after exposure to BAC.

11.
Microorganisms ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36985138

RESUMEN

Hormesis, or the hormetic effect, is a dose- or concentration-dependent response characterised by growth stimulation at low concentrations and inhibition at high concentrations. The impact of sub-lethal levels of disinfectants on the growth of Serratia species is critical to understanding the increasing number of outbreaks caused by this pathogen in healthcare settings. Serratia sp. HRI and Serratia marcescens ATCC 13880 were cultivated in sub-lethal levels of benzalkonium chloride (BAC), Didecyldimethylammonium chloride (DDAC), and VirukillTM. The maximum specific growth rates, doubling times, and cell counts were compared. The results revealed significant increases in maximum specific growth rates and shorter doubling times for Serratia sp. HRI when cultivated in sub-lethal levels of BAC and DDAC. The significant stimulatory effect of sub-lethal levels of these disinfectants for Serratia sp. HRI represents the first time hormesis has been observed in a Gram-negative bacterium for any disinfectant. Furthermore, this study is the first to observe the hormetic effect after treatment with DDAC and the second study to date analysing the impact of sub-lethal levels of disinfectants on the growth of bacterial species.

12.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37684045

RESUMEN

Huntington's disease arises from a toxic gain of function in the huntingtin (HTT) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological, and plasma metabolite levels. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic ß-catenin function.


Asunto(s)
Hepatocitos , Hígado , Animales , Ratones , Acetaminofén , Fenotipo
13.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425835

RESUMEN

Huntington's disease arises from a toxic gain of function in the huntingtin ( HTT ) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological and plasma metabolite level. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic ß-catenin function.

14.
Microorganisms ; 10(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422327

RESUMEN

Disinfectants and biosecurity are critically important to control microbial diseases. Resistance to disinfectants compromises sectors such as agriculture and healthcare systems. Currently, efflux pumps are the most common mechanism of antimicrobial resistance. This study aimed to identify the efflux transporters responsible for disinfectant resistance in a multidrug-resistant isolate Serratia sp. HRI compared to a susceptible Serratia sp. type strain. An efflux system profile was generated using the Transporter Automatic Annotation Pipeline (TransAAP) for both isolates. Thereafter, the efflux pump inhibitors, reserpine (RSP) and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) were used to reveal the role of efflux pumps in susceptibility to three disinfectants (Didecyldimethylammonium chloride, HyperCide®, and benzalkonium chloride). Interestingly, the resistant isolate had fewer efflux systems in total compared to the type strain and fewer efflux systems classified as resistance efflux pumps. After the addition of RSP, a significant reduction in resistance capabilities against all three antimicrobials was observed for both isolates. However, CCCP supplementation produced mixed results with some outcomes suggesting the involvement of the Eagle effect. This study provides evidence that efflux pumps are responsible for the disinfectant resistance phenotype of the Serratia species due to the increased susceptibility when efflux pump inhibitors are added.

15.
Microb Drug Resist ; 28(8): 841-848, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35759372

RESUMEN

Since the start of the COVID-19 pandemic, our reliance on disinfectants and sanitizers and the use thereof has grown. While this may protect human health, it may be selecting for antimicrobial-resistant microorganisms, including those that are not only capable of growth in the presence of disinfectants but also thrive using this as an energy source. Furthermore, there is a growing concern in emerging nosocomial pathogens, which have shown resistance to antibiotics and disinfectants. This rise in resistance has led to the investigation of various mechanisms behind resistance, such as biofilms, efflux pumps, and mobile genetic elements. Although many resistance mechanisms have been identified, it was discovered that some potentially pathogenic microbes could metabolize these compounds, which remains an avenue for further investigation. Investigating alternative metabolic pathways in microorganisms capable of growth using disinfectants as their sole carbon and energy source may provide insight into the metabolism of quaternary ammonium compound (QAC)-based antimicrobials. Many of the metabolic reactions proposed include hydroxylation, N-dealkylation, N-demethylation, and ß-oxidation of QACs. If clear metabolic pathways and reactions are elucidated, possible alternative approaches to QACs may be advised. Alternatively, this may provide opportunities for biodegradation of the compounds that adversely affect the environment.


Asunto(s)
COVID-19 , Desinfectantes , Antibacterianos/farmacología , Bacterias/genética , Bacterias/metabolismo , Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Humanos , Pandemias , Compuestos de Amonio Cuaternario/farmacología
16.
J Gen Virol ; 92(Pt 4): 752-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21177924

RESUMEN

Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ∼2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing >94% identity belonging to the same strain, and strain subtypes sharing >98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Circoviridae/virología , Circovirus/clasificación , Circovirus/aislamiento & purificación , Variación Genética , Filogeografía , Animales , Circovirus/genética , Datos de Secuencia Molecular , Psittaciformes , Análisis de Secuencia de ADN
17.
Arch Virol ; 155(3): 435-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20127375

RESUMEN

Beak and feather disease virus (BFDV), the causative agent of psittacine beak and feather disease (PBFD) infects psittaciformes worldwide. We provide an annotated sequence record of three full-length unique genomes of BFDV isolates from budgerigars (Melopsittacus undulatus) from a breeding farm in South Africa. The isolates share >99% nucleotide sequence identity with each other and approximately 96% nucleotide sequence identity to two recent isolates (Melopsittacus undulatus) from Thailand but only between 91.6 and 86.6% identity with all other full-length BFDV sequences. Maximum-likelihood analysis and recombination analysis suggest that the South African budgerigar BFDV isolates are unique to budgerigars, are non-recombinant in origin, and represent a new genotype of BFDV.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Circoviridae/veterinaria , Circovirus/clasificación , Circovirus/aislamiento & purificación , ADN Viral/genética , Genoma Viral , Melopsittacus/virología , Animales , Infecciones por Circoviridae/virología , Circovirus/genética , Análisis por Conglomerados , ADN Viral/química , Genotipo , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Sudáfrica
18.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32354966

RESUMEN

Antimicrobial resistance is a significant issue, and it threatens the prevention and effective treatment of a range of bacterial infections. Here, we report the whole-genome sequence of the multidrug-resistant isolate Serratia sp. strain HRI. A hybrid assembly was created using sequences from a first (MiSeq) and second (PacBio) sequencing run. This work is imperative for understanding antimicrobial resistance and adds to the knowledge base for combating multidrug-resistant bacteria.

19.
Exp Gerontol ; 130: 110805, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812582

RESUMEN

Osteoporosis is an age-related deterioration in bone health that is, at least in part, a stem cell disease. The different mechanisms and signaling pathways that change with age and contribute to the development of osteoporosis are being identified. One key upstream mechanism that appears to target a number of osteogenic pathways with age is kynurenine, a tryptophan metabolite and an endogenous Aryl hydrocarbon receptor (AhR) agonist. The AhR signaling pathway has been reported to promote aging phenotypes across species and in different tissues. We previously found that kynurenine accumulates with age in the plasma and various tissues including bone and induces bone loss and osteoporosis in mice. Bone marrow mesenchymal stem cells (BMSCs) are responsible for osteogenesis, adipogenesis, and overall bone regeneration. In the present study, we investigated the effect of kynurenine on BMSCs, with a focus on autophagy and senescence as two cellular processes that control BMSCs proliferation and differentiation capacity. We found that physiological levels of kynurenine (10 and 100 µM) disrupted autophagic flux as evidenced by the reduction of LC3B-II, and autophagolysosomal production, as well as a significant increase of p62 protein level. Additionally, kynurenine also induced a senescent phenotype in BMSCs as shown by the increased expression of several senescence markers including senescence associated ß-galactosidase in BMSCs. Additionally, western blotting reveals that levels of p21, another marker of senescence, also increased in kynurenine-treated BMSCs, while senescent-associated aggregation of nuclear H3K9me3 also showed a significant increase in response to kynurenine treatment. To validate that these effects are in fact due to AhR signaling pathway, we utilized two known AhR antagonists: CH-223191, and 3',4'-dimethoxyflavone to try to block AhR signaling and rescue kynurenine /AhR mediated effects. Indeed, AhR inhibition restored kynurenine-suppressed autophagy levels as shown by levels of LC3B-II, p62 and autophagolysosomal formation demonstrating a rescuing of autophagic flux. Furthermore, inhibition of AhR signaling prevented the kynurenine-induced increase in senescence associated ß-galactosidase and p21 levels, as well as blocking aggregation of nuclear H3K9me3. Taken together, our results suggest that kynurenine inhibits autophagy and induces senescence in BMSCs via AhR signaling, and that this may be a novel target to prevent or reduce age-associated bone loss and osteoporosis.


Asunto(s)
Autofagia/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Quinurenina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Ratones , Osteogénesis/efectos de los fármacos , Osteoporosis , Transducción de Señal , beta-Galactosidasa/efectos de los fármacos
20.
Heliyon ; 5(7): e02014, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31312732

RESUMEN

BACKGROUND: Gram-negative bacteria actively secrete outer membrane vesicles into the surrounding environment and these vesicles have been shown to play various physiological and protective roles such as carrying antibiotic-degrading enzymes and acting as decoys against host defences, therefore promoting the pathogenesis of the bacterium. It has been shown that avian pathogenic Escherichia coli species can increase vesicle biosynthesis through the acquisition of the hlyF gene but the effect this has on the cell by scavenging outer-membrane associated proteins (OmpA, OmpF) into the vesicles during vesicle release have not yet been investigated. RESULTS: Relative quantitative real-time PCR data obtained from hlyF expressing and non-expressing cells showed that during hlyF induction, ompF showed a nearly 2-fold down regulation relative to the non-expressing cells during the entire 24 hours, while ompA was expressed at the same level as the non-expressing cells during the first 8 hours of expression. At 24 hours post-hlyF expression, ompA was up-regulated 4-fold. CONCLUSIONS: The regulatory effects of the newly described outer-membrane vesicle biosynthesis-related gene, hlyF, on E. coli has not previously been investigated. As hlyF-induced vesicles contain OmpA and OmpF scavenged from the bacterial outer-membrane, potential regulatory effects on the host was investigated. An increase in ompA expression and an insignificant decrease in ompF expression was observed during hlyF induction demonstrating that hlyF-related biosynthesis is not related to decreased ompA expression, which is one of the potential mechanisms discussed in literature for biosynthesis. Outer-membrane vesicle biosynthesis during hlyF over-expression could potentially be accomplished through a different mechanism(s).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA