Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 145(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29439132

RESUMEN

How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética
2.
Virol J ; 14(1): 188, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28969654

RESUMEN

BACKGROUND: Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. RESULTS: Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. CONCLUSIONS: The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel dicistrovirus infecting A. fabae.


Asunto(s)
Áfidos/virología , Dicistroviridae/clasificación , Dicistroviridae/genética , Granjas , Metagenoma , Phaseolus/parasitología , Zea mays/parasitología , Animales , Kenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
3.
New Phytol ; 201(2): 388-402, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24033322

RESUMEN

388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth.


Asunto(s)
Aumento de la Célula , Modelos Biológicos , Células Vegetales/fisiología , Fenómenos Biomecánicos , Pared Celular/química , Pared Celular/fisiología , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología
4.
Sci Rep ; 9(1): 20067, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882631

RESUMEN

Sugarcane mosaic virus (SCMV) is distributed worldwide and infects three major crops: sugarcane, maize, and sorghum. The impact of SCMV is increased by its interaction with Maize chlorotic mottle virus which causes the synergistic maize disease maize lethal necrosis. Here, we characterised maize lethal necrosis-infected maize from multiple sites in East Africa, and found that SCMV was present in all thirty samples. This distribution pattern indicates that SCMV is a major partner virus in the East African maize lethal necrosis outbreak. Consistent with previous studies, our SCMV isolates were highly variable with several statistically supported recombination hot- and cold-spots across the SCMV genome. The recombination events generate conflicting phylogenetic signals from different fragments of the SCMV genome, so it is not appropriate to group SCMV genomes by simple similarity.


Asunto(s)
Filogenia , Potyvirus/genética , Recombinación Genética , Genes Virales , Secuenciación de Nucleótidos de Alto Rendimiento , Potyvirus/clasificación , Saccharum/virología , Especificidad de la Especie
5.
Sci Rep ; 8(1): 1173, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352173

RESUMEN

Maize chlorotic mottle virus has been rapidly spreading around the globe over the past decade. The interactions of maize chlorotic mottle virus with Potyviridae viruses causes an aggressive synergistic viral condition - maize lethal necrosis, which can cause total yield loss. Maize production in sub-Saharan Africa, where it is the most important cereal, is threatened by the arrival of maize lethal necrosis. We obtained maize chlorotic mottle virus genome sequences from across East Africa and for the first time from Ecuador and Hawaii, and constructed a phylogeny which highlights the similarity of Chinese to African isolates, and Ecuadorian to Hawaiian isolates. We used a measure of clustering, the adjusted Rand index, to extract region-specific SNPs and coding variation that can be used for diagnostics. The population genetics analysis we performed shows that the majority of sequence diversity is partitioned between populations, with diversity extremely low within China and East Africa.


Asunto(s)
Gammaherpesvirinae/fisiología , Enfermedades de las Plantas/virología , Secuencia de Bases , Biología Computacional/métodos , Gammaherpesvirinae/aislamiento & purificación , Variación Genética , Genoma Viral , Genotipo , Geografía Médica , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Polimorfismo de Nucleótido Simple
6.
Curr Opin Plant Biol ; 17: 78-85, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24507498

RESUMEN

Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Mitosis/fisiología , Células Vegetales/fisiología , Desarrollo de la Planta/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Mitosis/genética , Modelos Biológicos , Células Vegetales/metabolismo , Desarrollo de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA